Numerical Study of Jet–Target Interaction: Influence of Dielectric Permittivity on the Electric Field Experienced by the Target

被引:0
|
作者
Pedro Viegas
Anne Bourdon
机构
[1] Université Paris-Saclay,LPP, CNRS, École Polytechnique, Sorbonne Université, Université Paris
[2] DIFFER - Dutch Institute for Fundamental Energy Research,Sud
来源
关键词
Plasma target interaction; Plasma dielectric interaction; Plasma jet; Electric field; Surface charges;
D O I
暂无
中图分类号
学科分类号
摘要
This work presents a study of the influence of dielectric permittivity on the interaction between a positive pulsed He plasma jet and a 0.5 mm-thick dielectric target, using a validated two-dimensional numerical model. Six different targets are studied: five targets at floating potential with relative permittivities ϵr=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r =$$\end{document} 1, 4, 20, 56 and 80; and one grounded target of permittivity ϵr=56\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r=56$$\end{document}. The temporal evolution of the charging of the target and of the electric field inside the target are described, during the pulse of applied voltage and after its fall. It is found that the order of magnitude of the electric field inside the dielectric targets is the same for all floating targets with ϵr≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r \ge 4$$\end{document}. For all these targets, during the pulse of applied voltage, the electric field perpendicular to the target and averaged through the target thickness, at the point of discharge impact, is between 1 and 5 kV cm-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}. For the two remaining targets (ϵr=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r=1$$\end{document} and grounded target with ϵr=56\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _r=56$$\end{document}), the field is significantly higher than for all the other floating targets.
引用
收藏
页码:661 / 683
页数:22
相关论文
共 50 条
  • [21] EXPERIMENTAL STUDY OF THE INTERACTION OF AN HELIUM PLASMA JET AND A CONDUCTIVE TARGET.
    Kone, A.
    Caillier, B.
    Muja, C.
    Sainct, F. P.
    Guillot, P.
    2017 IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCE (ICOPS), 2017,
  • [22] INTERACTION OF A METALLIC JET WITH A MOVING TARGET.
    Yadav, H.S.
    Propellants, Explosives, Pyrotechnics, 1988, 13 (03) : 74 - 79
  • [23] Electric field and temperature in a target induced by a plasma jet imaged using Mueller polarimetry
    Slikboer, Elmar
    Sobota, Ana
    Guaitella, Olivier
    Garcia-Caurel, Enric
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (02)
  • [24] Projectile/target interaction with electric current flow along the target surface
    Chemeris V.T.
    Karpinos B.S.
    Raichenko A.I.
    Strength of Materials, 2002, 34 Y (05) : 508 - 513
  • [25] INFLUENCE OF A STRONG ELECTRIC-FIELD ON DIELECTRIC PERMITTIVITY OF ALCOHOLS .2. TEMPERATURE EFFECT
    DANIELEWICZFERCHMIN, I
    CHEMICAL PHYSICS, 1975, 8 (1-2) : 208 - 214
  • [26] INFLUENCE OF AN ELECTRIC-FIELD ON DIELECTRIC PERMITTIVITY OF LIQUID-CRYSTAL RHO-AZOXYANISOLE
    KRUPKOWS.T
    VIETH, W
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES CHIMIQUES, 1974, 22 (09): : 823 - 830
  • [27] INFLUENCE OF STRONG ELECTRIC FIELD ON DIELECTRIC PERMITTIVITY OF POLYCRYSTALLINE ICE DOPED BY SMALL AMOUNTS OF NAOH
    Szala, A.
    Orzechowski, K.
    NONLINEAR DIELECTRIC PHENOMENA IN COMPLEX LIQUIDS, 2005, 157 : 379 - 385
  • [28] Charge transfer to a dielectric target by guided ionization waves using electric field measurements
    Slikboer, Elmar
    Garcia-Caurel, Enric
    Guaitella, Olivier
    Sobota, Ana
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2017, 26 (03):
  • [29] THE EFFECT OF ELECTRIC FIELD ON THE DIELECTRIC PERMITTIVITY OF BST/STO SUPERLATTICE
    Zuo, Zhi-Gao
    Ling, Fu-Ri
    Li, Dan
    Liu, Jin-Song
    Yao, Jian-Quan
    MODERN PHYSICS LETTERS B, 2013, 27 (10):
  • [30] Numerical study of the target material and geometry influence on the uranium deposition
    Moshkunov, K. A.
    Smirnov, V. P.
    Kogut, D. K.
    Trifonov, N. N.
    Kurnaev, V. A.
    JOURNAL OF NUCLEAR MATERIALS, 2013, 433 (1-3) : 455 - 459