Direct form seminorms arising in the theory of interpolation by translates of a basis function

被引:0
|
作者
Jeremy Levesley
Will Light
机构
[1] University of Leicester,Department of Mathematics and Computer Science
[2] Leicester,undefined
来源
Advances in Computational Mathematics | 1999年 / 11卷
关键词
Error Estimate; Radial Basis Function; Direct Form; Density Result; Fubini Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
In the error analysis of the process of interpolation by translates of a single basis function, certain spaces of functions arise naturally. These spaces are defined with respect to a seminorm which is given in terms of the Fourier transform of the function. We call this an indirect seminorm. In certain well‐understood cases, the seminorm can be rewritten trivially in terms of the function, rather than its Fourier transform. We call this a direct seminorm. The direct form allows better error estimates to be obtained. In this paper, we shown how to rewrite most of the commonly arising indirect form seminorms in direct form, and begin a little of the analysis required to obtain the improved error estimates.
引用
收藏
页码:161 / 182
页数:21
相关论文
共 50 条
  • [21] Radial basis function interpolation surface
    Yin, Baocai
    Gao, Wen
    Journal of Computer Science and Technology, 1998, 13 (Suppl): : 63 - 68
  • [22] A radial basis function interpolation surface
    Yin, BC
    Gao, W
    FIFTH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN & COMPUTER GRAPHICS, VOLS 1 AND 2, 1997, : 391 - 394
  • [23] Hermitian Interpolation Using Window Systems Generated by Uniform Translates of the Gaussian Function
    M. L. Zhadanova
    E. A. Kiselev
    I. Ya. Novikov
    S. N. Ushakov
    Mathematical Notes, 2023, 114 : 1499 - 1502
  • [24] Hermitian Interpolation Using Window Systems Generated by Uniform Translates of the Gaussian Function
    Zhadanova, M. L.
    Kiselev, E. A.
    Novikov, I. Ya.
    Ushakov, S. N.
    MATHEMATICAL NOTES, 2023, 114 (5-6) : 1499 - 1502
  • [25] ON APPROXIMATION BY TRANSLATES AND RELATED PROBLEMS IN FUNCTION-THEORY
    FAXEN, B
    ARKIV FOR MATEMATIK, 1981, 19 (02): : 271 - 289
  • [26] Radial basis function neural networks of Hankel translates as universal approximators
    Marrero, Isabel
    ANALYSIS AND APPLICATIONS, 2019, 17 (06) : 897 - 930
  • [27] Solving Helmholtz problems with the boundary element method using direct radial basis function interpolation
    Loeffler, Carlos Friedrich
    Mansur, Webe Joao
    Barcelos, Hercules de Melo
    Bulcao, Andre
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2015, 61 : 218 - 225
  • [28] An error analysis for radial basis function interpolation
    Michael J. Johnson
    Numerische Mathematik, 2004, 98 : 675 - 694
  • [29] Analysis of radial basis function interpolation approach
    Zou You-Long
    Hu Fa-Long
    Zhou Can-Can
    Li Chao-Liu
    Dunn Keh-Jim
    APPLIED GEOPHYSICS, 2013, 10 (04) : 397 - 410
  • [30] An error analysis for radial basis function interpolation
    Johnson, MJ
    NUMERISCHE MATHEMATIK, 2004, 98 (04) : 675 - 694