Radial basis function neural networks of Hankel translates as universal approximators

被引:1
|
作者
Marrero, Isabel [1 ]
机构
[1] Univ La Laguna, Dept Anal Matemat, Aptdo 456, San Cristobal la Laguna 38200, Tenerife, Spain
关键词
Activation function; Hankel translation; nonpolynomiality; radial basis function neural network; universal approximation; NATIVE HILBERT-SPACES; RELAXED CONDITIONS; METRIC-SPACES; RBF NETWORKS; INTERPOLATION; REPRESENTATION; TRANSFORMATION; DISTRIBUTIONS; ERROR;
D O I
10.1142/S0219530519500064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Radial basis function neural networks (RBFNNs) of Hankel translates of order mu > -1/2 with a continuous activation function sigma for which the limit lim(z -> 0+) z(-mu-1/2)sigma(z) exists are shown to possess the universal approximation property in spaces of continuous and of p-integrable functions, 1 <= p < infinity, on (compact subsets of) [0, infinity) if, and only if, z(-mu-1/2)sigma(z) is not an even polynomial. This extends to the class of RBFNNs under consideration a result already known for RBFNNs of standard translates.
引用
收藏
页码:897 / 930
页数:34
相关论文
共 50 条
  • [1] Universal approximation by radial basis function networks of Delsarte translates
    Arteaga, Cristian
    Marrero, Isabel
    NEURAL NETWORKS, 2013, 46 : 299 - 305
  • [2] Relaxed conditions for radial-basis function networks to be universal approximators
    Liao, Y
    Fang, SC
    Nuttle, HLW
    NEURAL NETWORKS, 2003, 16 (07) : 1019 - 1028
  • [3] A comment on "Relaxed conditions for radial-basis function networks to be universal approximators"
    Wu, Wei
    Nan, Dong
    Long, Jin-ling
    Ma, Yu-mei
    NEURAL NETWORKS, 2008, 21 (10) : 1464 - 1465
  • [4] On the universal approximation property of radial basis function neural networks
    Ismayilova, Aysu
    Ismayilov, Muhammad
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2024, 92 (03) : 691 - 701
  • [5] A scheme for interpolation by Hankel translates of a basis function
    Arteaga, Cristian
    Marrero, Isabel
    JOURNAL OF APPROXIMATION THEORY, 2012, 164 (12) : 1540 - 1576
  • [6] Neural networks with a continuous squashing function in the output are universal approximators
    Castro, JL
    Mantes, CJ
    Benítez, JM
    NEURAL NETWORKS, 2000, 13 (06) : 561 - 563
  • [7] Quantum Neural Networks as Universal Function Approximators: Theory and Implementation
    Yang, Hen
    Hou, Xiaokai
    Wang, Xiaoting
    2024 14TH ASIAN CONTROL CONFERENCE, ASCC 2024, 2024, : 1952 - 1956
  • [8] Recurrent neural networks are universal approximators
    Schaefer, Anton Maximilian
    Zimmermann, Hans Georg
    ARTIFICIAL NEURAL NETWORKS - ICANN 2006, PT 1, 2006, 4131 : 632 - 640
  • [9] Layered neural networks as universal approximators
    Ciuca, I
    Ware, JA
    COMPUTATIONAL INTELLIGENCE: THEORY AND APPLICATIONS, 1997, 1226 : 411 - 415
  • [10] Recurrent neural networks are universal approximators
    Schaefer, Anton Maximilian
    Zimmermann, Hans-Georg
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2007, 17 (04) : 253 - 263