Radial basis function neural networks of Hankel translates as universal approximators

被引:1
|
作者
Marrero, Isabel [1 ]
机构
[1] Univ La Laguna, Dept Anal Matemat, Aptdo 456, San Cristobal la Laguna 38200, Tenerife, Spain
关键词
Activation function; Hankel translation; nonpolynomiality; radial basis function neural network; universal approximation; NATIVE HILBERT-SPACES; RELAXED CONDITIONS; METRIC-SPACES; RBF NETWORKS; INTERPOLATION; REPRESENTATION; TRANSFORMATION; DISTRIBUTIONS; ERROR;
D O I
10.1142/S0219530519500064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Radial basis function neural networks (RBFNNs) of Hankel translates of order mu > -1/2 with a continuous activation function sigma for which the limit lim(z -> 0+) z(-mu-1/2)sigma(z) exists are shown to possess the universal approximation property in spaces of continuous and of p-integrable functions, 1 <= p < infinity, on (compact subsets of) [0, infinity) if, and only if, z(-mu-1/2)sigma(z) is not an even polynomial. This extends to the class of RBFNNs under consideration a result already known for RBFNNs of standard translates.
引用
收藏
页码:897 / 930
页数:34
相关论文
共 50 条
  • [21] Spherical approximate identity neural networks are universal approximators
    Zainuddin, Zarita
    Fard, Saeed Panahian
    2014 10TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2014, : 72 - 76
  • [22] Interpolation by Hankel Translates of a Basis Function: Inversion Formulas and Polynomial Bounds
    Arteaga, Cristian
    Marrero, Isabel
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [23] Universal Approximation Using Radial-Basis-Function Networks
    Park, J.
    Sandberg, I. W.
    NEURAL COMPUTATION, 1991, 3 (02) : 246 - 257
  • [24] On function approximators implementable as layered neural networks
    Ciuca, I
    24TH EUROMICRO CONFERENCE - PROCEEDING, VOLS 1 AND 2, 1998, : 663 - 669
  • [25] Extreme Reformulated Radial Basis Function Neural Networks
    Bi, Gexin
    Dong, Fang
    SIXTH INTERNATIONAL SYMPOSIUM ON NEURAL NETWORKS (ISNN 2009), 2009, 56 : 101 - 110
  • [26] On simultaneous approximations by radial basis function neural networks
    Li, X
    APPLIED MATHEMATICS AND COMPUTATION, 1998, 95 (01) : 75 - 89
  • [27] Kernel orthonormalization in radial basis function neural networks
    Kaminski, W
    Strumillo, P
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (05): : 1177 - 1183
  • [28] Radial basis function neural networks: Theory and applications
    Strumillo, P
    Kaminski, W
    NEURAL NETWORKS AND SOFT COMPUTING, 2003, : 107 - 119
  • [29] Robust Training of Radial Basis Function Neural Networks
    Kalina, Jan
    Vidnerova, Petra
    ARTIFICIAL INTELLIGENCEAND SOFT COMPUTING, PT I, 2019, 11508 : 113 - 124
  • [30] Generalised Gaussian radial basis function neural networks
    Fernandez-Navarro, F.
    Hervas-Martinez, C.
    Gutierrez, P. A.
    SOFT COMPUTING, 2013, 17 (03) : 519 - 533