Direct form seminorms arising in the theory of interpolation by translates of a basis function

被引:0
|
作者
Jeremy Levesley
Will Light
机构
[1] University of Leicester,Department of Mathematics and Computer Science
[2] Leicester,undefined
来源
关键词
Error Estimate; Radial Basis Function; Direct Form; Density Result; Fubini Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
In the error analysis of the process of interpolation by translates of a single basis function, certain spaces of functions arise naturally. These spaces are defined with respect to a seminorm which is given in terms of the Fourier transform of the function. We call this an indirect seminorm. In certain well‐understood cases, the seminorm can be rewritten trivially in terms of the function, rather than its Fourier transform. We call this a direct seminorm. The direct form allows better error estimates to be obtained. In this paper, we shown how to rewrite most of the commonly arising indirect form seminorms in direct form, and begin a little of the analysis required to obtain the improved error estimates.
引用
收藏
页码:161 / 182
页数:21
相关论文
共 50 条
  • [41] Refined Error Estimates for Radial Basis Function Interpolation
    F.J. Narcowich
    J.D. Ward
    H. Wendland
    Constructive Approximation, 2003, 19 : 541 - 564
  • [42] Lebesgue function for multivariate interpolation by radial basis functions
    Mehri, Bahman
    Jokar, Sadegh
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (01) : 306 - 314
  • [43] Krylov subspace methods for radial basis function interpolation
    Faul, AC
    Powell, MJD
    NUMERICAL ANALYSIS 1999, 2000, 420 : 115 - 141
  • [44] Better bases for radial basis function interpolation problems
    Beatson, R. K.
    Levesley, J.
    Mouat, C. T.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (04) : 434 - 446
  • [45] Refined error estimates for radial basis function interpolation
    Narcowich, FJ
    Ward, JD
    Wendland, H
    CONSTRUCTIVE APPROXIMATION, 2003, 19 (04) : 541 - 564
  • [46] Mesh deformation based on radial basis function interpolation
    de Boer, A.
    van der Schoot, M. S.
    Bijl, H.
    COMPUTERS & STRUCTURES, 2007, 85 (11-14) : 784 - 795
  • [47] Multivariate interpolation using radial basis function networks
    Dang Thi Thu Hien
    Hoang Xuan Huan
    Huu Tue Huynh
    INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2009, 1 (03) : 291 - 309
  • [48] Inverse and saturation theorems for radial basis function interpolation
    Schaback, R
    Wendland, H
    MATHEMATICS OF COMPUTATION, 2002, 71 (238) : 669 - 681
  • [49] Nonlinear image interpolation by radial basis function networks
    Yasukawa, M
    Ikeguchi, T
    Takagi, M
    Matozaki, T
    PROGRESS IN CONNECTIONIST-BASED INFORMATION SYSTEMS, VOLS 1 AND 2, 1998, : 1199 - 1202
  • [50] Interpolation capability of the periodic radial basis function network
    Abe, Y.
    Iiguni, Y.
    IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 2006, 153 (06): : 785 - 794