Morley's triangles of a triangle in the isotropic plane

被引:0
|
作者
Kolar-Super, Ruzica [1 ]
Volenec, Vladimir [2 ]
机构
[1] JJ Strossmayer Univ Osijek, Fac Educ, Dept Nat Sci, Cara Hadrijana 10, Osijek 31000, Croatia
[2] Univ Zagreb, Dept Math, Bijenicka Cesta 30, Zagreb 10000, Croatia
关键词
Morley's triangle; Isotropic plane; Angle trisector; Standard triangle;
D O I
10.1007/s00022-024-00721-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we define and study Morley's triangles of a triangle in the isotropic plane. We derive the equations of angle trisectors of angles of the standard triangle in the isotropic plane, and utilizing them we get the coordinates of vertices of Morley's triangles of the standard triangle. We investigate relationships between Morley's triangles and the initial triangle, as well as connections with some other triangle elements in the isotropic plane. Finally, we consider some dual concepts of the introduced concepts.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Triangles III: Complex triangle functions
    Lester J.A.
    aequationes mathematicae, 1997, 53 (1-2) : 4 - 35
  • [42] A TILING OF THE PLANE WITH TRIANGLES
    MIELKE, PT
    TWO-YEAR COLLEGE MATHEMATICS JOURNAL, 1983, 14 (05): : 377 - 381
  • [43] Packing a triangle by equilateral triangles of harmonic sidelengths
    Januszewski, Janusz
    Zielonka, Lukasz
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [44] A Nonequilateral Triangle Generates Two Equilateral Triangles
    Trancanau, Cezar Alexandru
    Giugiuc, Leonard
    AMERICAN MATHEMATICAL MONTHLY, 2024, 131 (06): : 545 - 546
  • [45] Why Do All Triangles Form a Triangle?
    Stewart, Ian
    AMERICAN MATHEMATICAL MONTHLY, 2017, 124 (01): : 70 - 73
  • [46] A Note on Tropical Triangles in the Plane
    M.ANSOLA
    M.J.de la PUENTE
    ActaMathematicaSinica(EnglishSeries), 2009, 25 (11) : 1775 - 1786
  • [47] Equilateral Triangles and the Fano Plane
    Caldero, Philippe
    Germoni, Jerome
    AMERICAN MATHEMATICAL MONTHLY, 2016, 123 (08): : 789 - 801
  • [48] Multiple coverings of the plane with triangles
    Tardos, Gabor
    Toth, Geza
    DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 38 (02) : 443 - 450
  • [49] A note on tropical triangles in the plane
    M. Ansola
    M. J. de la Puente
    Acta Mathematica Sinica, English Series, 2009, 25 : 1775 - 1786
  • [50] Multiple Coverings of the Plane with Triangles
    Gabor Tardos
    Geza Toth
    Discrete & Computational Geometry, 2007, 38 : 443 - 450