Morley's triangles of a triangle in the isotropic plane

被引:0
|
作者
Kolar-Super, Ruzica [1 ]
Volenec, Vladimir [2 ]
机构
[1] JJ Strossmayer Univ Osijek, Fac Educ, Dept Nat Sci, Cara Hadrijana 10, Osijek 31000, Croatia
[2] Univ Zagreb, Dept Math, Bijenicka Cesta 30, Zagreb 10000, Croatia
关键词
Morley's triangle; Isotropic plane; Angle trisector; Standard triangle;
D O I
10.1007/s00022-024-00721-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we define and study Morley's triangles of a triangle in the isotropic plane. We derive the equations of angle trisectors of angles of the standard triangle in the isotropic plane, and utilizing them we get the coordinates of vertices of Morley's triangles of the standard triangle. We investigate relationships between Morley's triangles and the initial triangle, as well as connections with some other triangle elements in the isotropic plane. Finally, we consider some dual concepts of the introduced concepts.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A tale of two triangles: comparing the Fraud Triangle with criminology's Crime Triangle
    Mui, Grace
    Mailley, Jennifer
    ACCOUNTING RESEARCH JOURNAL, 2015, 28 (01) : 45 - 58
  • [22] An areal view of the Morley triangle
    Scott, J. A.
    MATHEMATICAL GAZETTE, 2013, 97 (539): : 304 - 306
  • [23] 108.16 Golden triangles founded on Kepler's triangle
    Scimone, Aldo
    MATHEMATICAL GAZETTE, 2024, 108 (571): : 152 - 154
  • [24] Diagonal triangle of a non-tangential quadrilateral in the isotropic plane
    Beban-Brkic, Jelena
    Simic, Marija
    Volenec, Vladimir
    MATHEMATICAL COMMUNICATIONS, 2011, 16 (01) : 157 - 168
  • [25] On Napoleon's theorem in the isotropic plane]{On Napoleon's theorem in the isotropic plane
    Horst Martini
    Margarita Spirova
    Periodica Mathematica Hungarica, 2006, 53 (1-2) : 199 - 208
  • [26] Similar Triangles in a Triangle Proposal
    Masroor, Faraz
    AMERICAN MATHEMATICAL MONTHLY, 2024, 132 (02): : 185 - 186
  • [27] EQUILATERAL TRIANGLES ON A GIVEN TRIANGLE
    GREITZER, SL
    AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (04): : 406 - &
  • [28] Dissection of a Triangle into Similar Triangles
    Andrzej Zak
    Discrete & Computational Geometry, 2005, 34 : 295 - 312
  • [29] Pascal's Triangle and Other Number Triangles in Clifford Analysis
    Tomaz, G.
    Falcao, M. I.
    Malonek, H. R.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 313 - 316
  • [30] PARITY TRIANGLES OF PASCALS TRIANGLE
    KUNG, SHL
    FIBONACCI QUARTERLY, 1976, 14 (01): : 54 - 54