Compactness, interpolation inequalities for small Lebesgue-Sobolev spaces and applications

被引:0
|
作者
A. Fiorenza
J. M. Rakotoson
机构
[1] Universitá di Napoli “Federico II”,Dipartimento di Costruzioni e Metodi Matematici in Architettura
[2] Istituto per le Applicazioni del Calcolo “Mauro Picone”,Département de Mathématiques UMR 6086
[3] Université de Poitiers,undefined
关键词
System Theory; Sobolev Space; Variational Problem; Critical Exponent; Lebesgue Space;
D O I
暂无
中图分类号
学科分类号
摘要
We study some generalized small Lebesgue spaces and their associated Sobolev spaces. In particular, we prove that small Lebesgue-Sobolev spaces W1,(p(Ω) are compactly embedded in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\frac{np}{n-p}}(\O),\ p<n$$\end{document}, p < n. As an application, we study variational problems involving critical exponents under multiple constraints.
引用
收藏
页码:187 / 203
页数:16
相关论文
共 50 条
  • [21] SHORT PROOFS FOR INTERPOLATION INEQUALITIES IN SOBOLEV SPACES WITH VARIABLE EXPONENTS
    Tan Duc Do
    Bui Le Trong Thanh
    Nguyen Ngoc Trong
    COLLOQUIUM MATHEMATICUM, 2022, 170 (02) : 307 - 314
  • [22] Real interpolation method, Lorentz spaces and refined Sobolev inequalities
    Chamorro, Diego
    Lemarie-Rieusset, Pierre-Gilles
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (12) : 3219 - 3232
  • [23] Interpolation inequalities in function spaces of Sobolev-Lorentz type
    Byeon, Jaeseong
    Kim, Hyunseok
    Oh, Jisu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 516 (02)
  • [24] GAGLIARDO-NIRENBERG AND SOBOLEV INTERPOLATION INEQUALITIES ON BESOV SPACES
    Nguyen Anh Dao
    Nguyen Lam
    Lu, Guozhen
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (02) : 605 - 616
  • [25] Pointwise inequalities in variable Sobolev spaces and applications
    Almeida, Alexandre
    Samko, Stefan
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2007, 26 (02): : 179 - 193
  • [26] Sobolev-type inequalities for potentials in grand variable exponent Lebesgue spaces
    Edmunds, David E.
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (10) : 2174 - 2188
  • [27] COMPACTNESS OF EMBEDDINGS OF SOBOLEV SPACES
    DUC, DM
    DUNG, L
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1989, 40 : 105 - 119
  • [28] Strong compactness in Sobolev spaces
    Sandro Zagatti
    manuscripta mathematica, 2018, 156 : 303 - 327
  • [29] SYMMETRY AND COMPACTNESS IN SOBOLEV SPACES
    LIONS, PL
    JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 49 (03) : 315 - 334
  • [30] Strong compactness in Sobolev spaces
    Zagatti, Sandro
    MANUSCRIPTA MATHEMATICA, 2018, 156 (3-4) : 303 - 327