Compactness, interpolation inequalities for small Lebesgue-Sobolev spaces and applications

被引:0
|
作者
A. Fiorenza
J. M. Rakotoson
机构
[1] Universitá di Napoli “Federico II”,Dipartimento di Costruzioni e Metodi Matematici in Architettura
[2] Istituto per le Applicazioni del Calcolo “Mauro Picone”,Département de Mathématiques UMR 6086
[3] Université de Poitiers,undefined
关键词
System Theory; Sobolev Space; Variational Problem; Critical Exponent; Lebesgue Space;
D O I
暂无
中图分类号
学科分类号
摘要
We study some generalized small Lebesgue spaces and their associated Sobolev spaces. In particular, we prove that small Lebesgue-Sobolev spaces W1,(p(Ω) are compactly embedded in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\frac{np}{n-p}}(\O),\ p<n$$\end{document}, p < n. As an application, we study variational problems involving critical exponents under multiple constraints.
引用
收藏
页码:187 / 203
页数:16
相关论文
共 50 条
  • [31] Characterization of interpolation between Grand, small or classical Lebesgue spaces
    Fiorenza, Alberto
    Formica, Maria Rosaria
    Gogatishvili, Amiran
    Kopaliani, Tengiz
    Rakotoson, Jean Michel
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 : 422 - 453
  • [32] Interpolation inequalities for modified Sobolev spaces and their implications to inversion of Radon transform
    M. Thamban Nair
    Pradeep Boggarapu
    Proceedings of the Indian National Science Academy, 2023, 89 : 410 - 415
  • [33] Interpolation inequalities for modified Sobolev spaces and their implications to inversion of Radon transform
    Nair, M. Thamban
    Boggarapu, Pradeep
    PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY, 2023, 89 (02): : 410 - 415
  • [34] New properties of small Lebesgue spaces and their applications
    Fiorenza, A
    Rakotoson, JM
    MATHEMATISCHE ANNALEN, 2003, 326 (03) : 543 - 561
  • [35] New properties of small Lebesgue spaces and their applications
    A. Fiorenza
    J.M. Rakotoson
    Mathematische Annalen, 2003, 326 : 543 - 561
  • [36] Lebesgue and Sobolev Spaces with Variable Exponents
    Diening, Lars
    Harjulehto, Petteri
    Hasto, Peter
    Ruzicka, Michael
    LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 : 1 - +
  • [37] Integral operators on Sobolev–Lebesgue spaces
    Miana P.J.
    Oliva-Maza J.
    Banach Journal of Mathematical Analysis, 2021, 15 (3)
  • [38] SOBOLEV INTERPOLATION INEQUALITIES WITH WEIGHTS
    GUTIERREZ, CE
    WHEEDEN, RL
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (01) : 263 - 281
  • [40] On Compactness of Operators in Variable Exponent Lebesgue Spaces
    Samko, Stefan
    TOPICS IN OPERATOR THEORY: OPERATORS, MATRICES AND ANALYTIC FUNCTIONS, VOL 1, 2010, 202 : 497 - 508