Strong compactness in Sobolev spaces

被引:0
|
作者
Sandro Zagatti
机构
[1] SISSA,
来源
manuscripta mathematica | 2018年 / 156卷
关键词
46B50; 49J45;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a strong compactness criterion in Sobolev spaces: given a sequence (un)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u_n)$$\end{document} in Wloc1,p(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{\text {loc}}^{1,p}({\mathbb {R}}^d)$$\end{document}, converging in Llocp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\text {loc}}^{p}$$\end{document} to a map u∈Wloc1,p(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in W_{\text {loc}}^{1,p}({\mathbb {R}}^d)$$\end{document} and such that |∇un|≤f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\nabla u_n | \le f$$\end{document} almost everywhere, for some f∈Llocp(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in L_{\text {loc}}^{p}({\mathbb {R}}^d)$$\end{document}, we provide a necessary and sufficient condition under which (un)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u_n)$$\end{document} converges strongly to u in Wloc1,p(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{\text {loc}}^{1,p}({\mathbb {R}}^d)$$\end{document}. In addition we prove a pointwise version of the criterion, according to which, given (un)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(u_n)$$\end{document} and u as above, but with no boundedness assumptions on the sequence of gradients, we have ∇un→∇u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla u_n \rightarrow \nabla u$$\end{document} pointwise almost everywhere.
引用
收藏
页码:303 / 327
页数:24
相关论文
共 50 条