Shannon Entropy-Based Prediction of Solar Cycle 25

被引:0
|
作者
Bharati Kakad
Amar Kakad
Durbha Sai Ramesh
机构
[1] Indian Institute of Geomagnetism,
来源
Solar Physics | 2017年 / 292卷
关键词
Solar cycle; Sunspots; Models;
D O I
暂无
中图分类号
学科分类号
摘要
A new model is proposed to forecast the peak sunspot activity of the upcoming solar cycle (SC) using Shannon entropy estimates related to the declining phase of the preceding SC. Daily and monthly smoothed international sunspot numbers are used in the present study. The Shannon entropy is the measure of inherent randomness in the SC and is found to vary with the phase of an SC as it progresses. In this model each SC with length Tcy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm{cy}}$\end{document} is divided into five equal parts of duration Tcy/5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm{cy}}/5$\end{document}. Each part is considered as one phase, and they are sequentially termed P1, P2, P3, P4, and P5. The Shannon entropy estimates for each of these five phases are obtained for the n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document}th SC starting from n=10–23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n=10\,\mbox{--}\,23$\end{document}. We find that the Shannon entropy during the ending phase (P5) of the n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document}th SC can be efficiently used to predict the peak smoothed sunspot number of the (n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(n+1)$\end{document}th SC, i.e.Smaxn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{max}}^{n+1}$\end{document}. The prediction equation derived in this study has a good correlation coefficient of 0.94. A noticeable decrease in entropy from 4.66 to 3.89 is encountered during P5 of SCs 22 to 23. The entropy value for P5 of the present SC 24 is not available as it has not yet ceased. However, if we assume that the fall in entropy continues for SC 24 at the same rate as that for SC 23, then we predict the peak smoothed sunspot number of 63±11.3 for SC 25. It is suggested that the upcoming SC 25 will be significantly weaker and comparable to the solar activity observed during the Dalton minimum in the past.
引用
收藏
相关论文
共 50 条
  • [41] Entropy-Based Sparse Trajectories Prediction Enhanced by Matrix Factorization
    Zhang, Lei
    Fan, Qingfu
    Li, Wen
    Liang, Zhizhen
    Zhang, Guoxing
    Luo, Tongyang
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2017, E100D (09): : 2215 - 2218
  • [42] Entropy-based Grey Correlation Fault Diagnosis Prediction Model
    Zhao Ying
    Kong Lifang
    He Guoliang
    2012 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL 2, 2012, : 88 - 91
  • [43] Prediction of Sunspot and Plage Coverage for Solar Cycle 25
    Penza, Valentina
    Berrilli, Francesco
    Bertello, Luca
    Cantoresi, Matteo
    Criscuoli, Serena
    ASTROPHYSICAL JOURNAL LETTERS, 2021, 922 (01)
  • [44] A Decline Phase Modeling for the Prediction of Solar Cycle 25
    Han, Y. B.
    Yin, Z. Q.
    SOLAR PHYSICS, 2019, 294 (08)
  • [45] A Decline Phase Modeling for the Prediction of Solar Cycle 25
    Y. B. Han
    Z. Q. Yin
    Solar Physics, 2019, 294
  • [46] An early prediction of the maximum amplitude of the solar cycle 25
    Helal, Hamid R.
    Galal, A. A.
    JOURNAL OF ADVANCED RESEARCH, 2013, 4 (03) : 275 - 278
  • [47] An evidential link prediction method and link predictability based on Shannon entropy
    Yin, Likang
    Zheng, Haoyang
    Bian, Tian
    Deng, Yong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 482 : 699 - 712
  • [48] Ingenuity of Shannon entropy-based fractional order hybrid swarming strategy to solve optimal power flows
    Khan, Babar Sattar
    Qamar, Affaq
    Ullah, Farman
    Bilal, Muhammad
    CHAOS SOLITONS & FRACTALS, 2023, 170
  • [49] A New EMD-Shannon Entropy-based Methodology for Detection of Inter-turn faults in Transformers
    Alvarez-Monroy, Gustavo
    Mejia-Barron, Arturo
    Valtierra Rodriguez, Martin
    Granados-Lieberman, David
    Olivares-Galvan, Juan C.
    Escarela-Perez, Rafael
    2017 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC), 2017,
  • [50] Multi-Level Wavelet Shannon Entropy-Based Method for Single-Sensor Fault Location
    Yang, Qiaoning
    Wang, Jianlin
    ENTROPY, 2015, 17 (10) : 7101 - 7117