Shannon Entropy-Based Prediction of Solar Cycle 25

被引:0
|
作者
Bharati Kakad
Amar Kakad
Durbha Sai Ramesh
机构
[1] Indian Institute of Geomagnetism,
来源
Solar Physics | 2017年 / 292卷
关键词
Solar cycle; Sunspots; Models;
D O I
暂无
中图分类号
学科分类号
摘要
A new model is proposed to forecast the peak sunspot activity of the upcoming solar cycle (SC) using Shannon entropy estimates related to the declining phase of the preceding SC. Daily and monthly smoothed international sunspot numbers are used in the present study. The Shannon entropy is the measure of inherent randomness in the SC and is found to vary with the phase of an SC as it progresses. In this model each SC with length Tcy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm{cy}}$\end{document} is divided into five equal parts of duration Tcy/5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm{cy}}/5$\end{document}. Each part is considered as one phase, and they are sequentially termed P1, P2, P3, P4, and P5. The Shannon entropy estimates for each of these five phases are obtained for the n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document}th SC starting from n=10–23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n=10\,\mbox{--}\,23$\end{document}. We find that the Shannon entropy during the ending phase (P5) of the n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document}th SC can be efficiently used to predict the peak smoothed sunspot number of the (n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(n+1)$\end{document}th SC, i.e.Smaxn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{max}}^{n+1}$\end{document}. The prediction equation derived in this study has a good correlation coefficient of 0.94. A noticeable decrease in entropy from 4.66 to 3.89 is encountered during P5 of SCs 22 to 23. The entropy value for P5 of the present SC 24 is not available as it has not yet ceased. However, if we assume that the fall in entropy continues for SC 24 at the same rate as that for SC 23, then we predict the peak smoothed sunspot number of 63±11.3 for SC 25. It is suggested that the upcoming SC 25 will be significantly weaker and comparable to the solar activity observed during the Dalton minimum in the past.
引用
收藏
相关论文
共 50 条
  • [21] Entropy-based link prediction in weighted networks
    Xu, Zhongqi
    Pu, Cunlai
    Sharafat, Rajput Ramiz
    Li, Lunbo
    Yang, Jian
    CHINESE PHYSICS B, 2017, 26 (01)
  • [22] Solar cycle characteristics and their application in the prediction of cycle 25
    Li, F. Y.
    Kong, D. F.
    Xie, J. L.
    Xiang, N. B.
    Xu, J. C.
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2018, 181 : 110 - 115
  • [23] ENTROPY-BASED NUCLEAR FUEL CYCLE SENSITIVITIES AND COVARIANCES
    Scopatz, Anthony M.
    Schneider, Erich A.
    Li, Jun
    Yim, Man-Sung
    NUCLEAR TECHNOLOGY, 2013, 183 (01) : 45 - 61
  • [24] A Shannon Entropy-Based Conflict Measure For Enhancing Granular Computing-Based Information Processing
    Baraka, Ali
    Panoutsos, George
    Mahfouf, Mahdi
    Cater, Stephen
    2014 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING (GRC), 2014, : 13 - 18
  • [25] An entropy-based failure prediction model for the creep process
    Shirazi, Zohreh
    Mohammadi, Bijan
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2023, 32 (10) : 1188 - 1205
  • [26] EMD-Shannon Entropy-Based Methodology to Detect Incipient Damages in a Truss Structure
    Moreno-Gomez, Alejandro
    Amezquita-Sanchez, Juan P.
    Valtierra-Rodriguez, Martin
    Perez-Ramirez, Carlos A.
    Dominguez-Gonzalez, Aurelio
    Chavez-Alegria, Omar
    APPLIED SCIENCES-BASEL, 2018, 8 (11):
  • [27] Entropy-based approach to missing-links prediction
    Parisi F.
    Caldarelli G.
    Squartini T.
    Applied Network Science, 2018, 3 (01)
  • [28] Comparison of physics-based prediction models of solar cycle 25
    Jiang, Jie
    Zhang, Zebin
    Petrovay, Kristof
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2023, 243
  • [29] Hemispheric prediction of solar cycle 25 based on a deep learning technique
    Prasad, Amrita
    Roy, Soumya
    Sarkar, Arindam
    ADVANCES IN SPACE RESEARCH, 2024, 73 (03) : 2119 - 2132
  • [30] Prediction of Amplitude and Timing of Solar Cycle 25
    Partha Chowdhury
    Rajmal Jain
    P. C. Ray
    Dipali Burud
    Amlan Chakrabarti
    Solar Physics, 2021, 296