Shannon Entropy-Based Prediction of Solar Cycle 25

被引:0
|
作者
Bharati Kakad
Amar Kakad
Durbha Sai Ramesh
机构
[1] Indian Institute of Geomagnetism,
来源
Solar Physics | 2017年 / 292卷
关键词
Solar cycle; Sunspots; Models;
D O I
暂无
中图分类号
学科分类号
摘要
A new model is proposed to forecast the peak sunspot activity of the upcoming solar cycle (SC) using Shannon entropy estimates related to the declining phase of the preceding SC. Daily and monthly smoothed international sunspot numbers are used in the present study. The Shannon entropy is the measure of inherent randomness in the SC and is found to vary with the phase of an SC as it progresses. In this model each SC with length Tcy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm{cy}}$\end{document} is divided into five equal parts of duration Tcy/5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm{cy}}/5$\end{document}. Each part is considered as one phase, and they are sequentially termed P1, P2, P3, P4, and P5. The Shannon entropy estimates for each of these five phases are obtained for the n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document}th SC starting from n=10–23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n=10\,\mbox{--}\,23$\end{document}. We find that the Shannon entropy during the ending phase (P5) of the n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document}th SC can be efficiently used to predict the peak smoothed sunspot number of the (n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(n+1)$\end{document}th SC, i.e.Smaxn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{max}}^{n+1}$\end{document}. The prediction equation derived in this study has a good correlation coefficient of 0.94. A noticeable decrease in entropy from 4.66 to 3.89 is encountered during P5 of SCs 22 to 23. The entropy value for P5 of the present SC 24 is not available as it has not yet ceased. However, if we assume that the fall in entropy continues for SC 24 at the same rate as that for SC 23, then we predict the peak smoothed sunspot number of 63±11.3 for SC 25. It is suggested that the upcoming SC 25 will be significantly weaker and comparable to the solar activity observed during the Dalton minimum in the past.
引用
收藏
相关论文
共 50 条
  • [31] Prediction of Amplitude and Timing of Solar Cycle 25
    Chowdhury, Partha
    Jain, Rajmal
    Ray, P. C.
    Burud, Dipali
    Chakrabarti, Amlan
    SOLAR PHYSICS, 2021, 296 (04)
  • [32] Prediction of solar cycle 25: applications and comparison
    Valentina Penza
    Luca Bertello
    Matteo Cantoresi
    Serena Criscuoli
    Francesco Berrilli
    Rendiconti Lincei. Scienze Fisiche e Naturali, 2023, 34 : 663 - 670
  • [33] An Early Prediction of the Amplitude of Solar Cycle 25
    Pesnell, W. Dean
    Schatten, Kenneth H.
    SOLAR PHYSICS, 2018, 293 (07)
  • [34] Prediction of solar cycle 25: applications and comparison
    Penza, Valentina
    Bertello, Luca
    Cantoresi, Matteo
    Criscuoli, Serena
    Berrilli, Francesco
    RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI, 2023, 34 (03) : 663 - 670
  • [35] An Early Prediction of the Amplitude of Solar Cycle 25
    W. Dean Pesnell
    Kenneth H. Schatten
    Solar Physics, 2018, 293
  • [36] A Shannon Entropy-Based Methodology to Detect and Locate Cables Loss in a Cable-Stayed Bridge
    Machorro-Lopez, Jose M.
    Valtierra-Rodriguez, Martin
    Amezquita-Sanchez, Juan P.
    Carrion-Viramontes, Francisco J.
    Quintana-Rodriguez, Juan A.
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2021, 13 (05)
  • [37] Relative Information Gain: Shannon entropy-based measure of the relative structural conservation in RNA alignments
    Pietrosanto, Marco
    Adinolfi, Marta
    Guarracino, Andrea
    Ferre, Fabrizio
    Ausiello, Gabriele
    Vitale, Ilio
    Helmer-Citterich, Manuela
    NAR GENOMICS AND BIOINFORMATICS, 2021, 3 (01)
  • [38] Lempel-Ziv Complexity and Shannon Entropy-based Support Vector Clustering of ECG Signals
    Villazana, Sergio
    Seijas, Cesar
    Caralli, Antonino
    INGENIERIA UC, 2015, 22 (01): : 7 - 15
  • [39] A novel Shannon entropy-based backward cloud model and cloud K-means clustering
    Anjali, Anjana
    Gupta, Anjana
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [40] Solar cycle 25 amplitude prediction based on sunspot number increase rate
    Efimenko, V. M.
    Lozitsky, V. G.
    ADVANCES IN SPACE RESEARCH, 2023, 72 (04) : 1448 - 1453