Shannon Entropy-Based Prediction of Solar Cycle 25

被引:0
|
作者
Bharati Kakad
Amar Kakad
Durbha Sai Ramesh
机构
[1] Indian Institute of Geomagnetism,
来源
Solar Physics | 2017年 / 292卷
关键词
Solar cycle; Sunspots; Models;
D O I
暂无
中图分类号
学科分类号
摘要
A new model is proposed to forecast the peak sunspot activity of the upcoming solar cycle (SC) using Shannon entropy estimates related to the declining phase of the preceding SC. Daily and monthly smoothed international sunspot numbers are used in the present study. The Shannon entropy is the measure of inherent randomness in the SC and is found to vary with the phase of an SC as it progresses. In this model each SC with length Tcy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm{cy}}$\end{document} is divided into five equal parts of duration Tcy/5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\mathrm{cy}}/5$\end{document}. Each part is considered as one phase, and they are sequentially termed P1, P2, P3, P4, and P5. The Shannon entropy estimates for each of these five phases are obtained for the n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document}th SC starting from n=10–23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n=10\,\mbox{--}\,23$\end{document}. We find that the Shannon entropy during the ending phase (P5) of the n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n$\end{document}th SC can be efficiently used to predict the peak smoothed sunspot number of the (n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(n+1)$\end{document}th SC, i.e.Smaxn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{\mathrm{max}}^{n+1}$\end{document}. The prediction equation derived in this study has a good correlation coefficient of 0.94. A noticeable decrease in entropy from 4.66 to 3.89 is encountered during P5 of SCs 22 to 23. The entropy value for P5 of the present SC 24 is not available as it has not yet ceased. However, if we assume that the fall in entropy continues for SC 24 at the same rate as that for SC 23, then we predict the peak smoothed sunspot number of 63±11.3 for SC 25. It is suggested that the upcoming SC 25 will be significantly weaker and comparable to the solar activity observed during the Dalton minimum in the past.
引用
收藏
相关论文
共 50 条
  • [1] Shannon Entropy-Based Prediction of Solar Cycle 25
    Kakad, Bharati
    Kakad, Amar
    Ramesh, Durbha Sai
    SOLAR PHYSICS, 2017, 292 (07)
  • [2] A SHANNON ENTROPY-BASED GENERAL DERIVATION OF INFILTRATION EQUATIONS
    Singh, V. P.
    TRANSACTIONS OF THE ASABE, 2011, 54 (01) : 123 - 129
  • [3] Seismic Data Interpolation by Shannon Entropy-Based Shaping
    Huang, Weilin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] Shannon Entropy-Based Fingerprint Similarity Search Strategy
    Wang, Yuan
    Geppert, Hanna
    Bajorath, Juergen
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2009, 49 (07) : 1687 - 1691
  • [5] Image Compression Using Shannon Entropy-Based Image Thresholding
    Chiranjeevi, Karri
    Jena, Uma Ranjan
    Harika, Asha
    COMPUTATIONAL INTELLIGENCE IN DATA MINING, CIDM 2016, 2017, 556 : 101 - 110
  • [6] Shannon entropy-based approach for calculating values of WABL parameters
    Mert, Ali
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01): : 1100 - 1109
  • [7] Shannon Entropy-Based Seismic Local Correlation Measure and Enhancement
    Huang, Weilin
    Chuai, Xiaoyu
    Rao, Ying
    Li, Baoyu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [8] The Shannon entropy-based node placement for enrichment and simplification of meshes
    Savchenko, Vladimir
    Savchenko, Maria
    Egorova, Olga
    Hagiwara, Ichiro
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 2, PROCEEDINGS, 2007, 4488 : 65 - +
  • [9] A Shannon entropy-based model for the gas adsorption process by coal
    Zhu, Zhongfan
    Li, Luoying
    ENVIRONMENTAL EARTH SCIENCES, 2025, 84 (01)
  • [10] Harnessing Shannon entropy-based descriptors in machine learning models to enhance the prediction accuracy of molecular properties
    Guha, Rajarshi
    Velegol, Darrell
    JOURNAL OF CHEMINFORMATICS, 2023, 15 (01)