Some Characterizations of Linear Weingarten Surfaces in 3-Dimensional Space Forms

被引:0
|
作者
Yan Ru Luo
Dan Yang
Xiao Ying Zhu
机构
[1] Liaoning University,School of Mathematics
来源
Results in Mathematics | 2022年 / 77卷
关键词
Surfaces of revolution; biconservative surfaces; linear weingarten surfaces; 53B25; 53C40;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a class of surfaces satisfying an interesting geometric equation A∇H=kH∇H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A \nabla H=kH\nabla H$$\end{document} in non-flat 3-dimensional space forms N3(c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^{3}(c)$$\end{document}, where A is the shape operator, H is the mean curvature and k is a constant. This kind of surfaces are called generalized biconservative surfaces (or GB surfaces for short). We prove that every GB surface in 3-dimensional space forms is linear Weingarten, and we classify all GB surfaces in 3-dimensional sphere S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {S}}^{3}$$\end{document} and hyperbolic space H3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^{3}$$\end{document}, respectively. Moreover, for a curvature energy in Riemannian 3-space forms, we show that the profile curves of rotational GB surfaces can be characterized as the critical curves.
引用
收藏
相关论文
共 50 条
  • [1] Some Characterizations of Linear Weingarten Surfaces in 3-Dimensional Space Forms
    Luo, Yan Ru
    Yang, Dan
    Zhu, Xiao Ying
    RESULTS IN MATHEMATICS, 2022, 77 (03)
  • [2] Channel linear Weingarten surfaces in space forms
    Udo Hertrich-Jeromin
    Mason Pember
    Denis Polly
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2023, 64 : 969 - 1009
  • [3] Channel linear Weingarten surfaces in space forms
    Hertrich-Jeromin, Udo
    Pember, Mason
    Polly, Denis
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2023, 64 (04): : 969 - 1009
  • [4] Weingarten rotation surfaces in 3-dimensional de Sitter space
    Liu H.
    Liu G.
    Journal of Geometry, 2004, 79 (1-2) : 156 - 168
  • [5] Spinorial Characterizations of Surfaces into 3-dimensional Pseudo-Riemannian Space Forms
    Lawn, Marie-Amelie
    Roth, Julien
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2011, 14 (03) : 185 - 195
  • [6] Spinorial Characterizations of Surfaces into 3-dimensional Pseudo-Riemannian Space Forms
    Marie-Amélie Lawn
    Julien Roth
    Mathematical Physics, Analysis and Geometry, 2011, 14 : 185 - 195
  • [7] POLYNOMIAL TRANSLATION WEINGARTEN SURFACES IN 3-DIMENSIONAL EUCLIDEAN SPACE
    Munteanu, M. I.
    Nistor, A. I.
    DIFFERENTIAL GEOMETRY, 2009, : 316 - 320
  • [8] CHARACTERIZATIONS OF LINEAR WEINGARTEN SPACELIKE HYPERSURFACES IN LORENTZ SPACE FORMS
    Aquino, Cicero P.
    de Lima, Henrique F.
    Velasquez, Marco Antonio L.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2015, 45 (01) : 13 - 27
  • [9] On Rotational Surfaces in 3-Dimensional de Sitter Space with Weingarten Condition
    Burcu Bektaş Demirci
    Mediterranean Journal of Mathematics, 2022, 19
  • [10] On Rotational Surfaces in 3-Dimensional de Sitter Space with Weingarten Condition
    Demirci, Burcu Bektas
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (03)