Surfaces of revolution;
biconservative surfaces;
linear weingarten surfaces;
53B25;
53C40;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We consider a class of surfaces satisfying an interesting geometric equation A∇H=kH∇H\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$A \nabla H=kH\nabla H$$\end{document} in non-flat 3-dimensional space forms N3(c)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$N^{3}(c)$$\end{document}, where A is the shape operator, H is the mean curvature and k is a constant. This kind of surfaces are called generalized biconservative surfaces (or GB surfaces for short). We prove that every GB surface in 3-dimensional space forms is linear Weingarten, and we classify all GB surfaces in 3-dimensional sphere S3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {S}}^{3}$$\end{document} and hyperbolic space H3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {H}}^{3}$$\end{document}, respectively. Moreover, for a curvature energy in Riemannian 3-space forms, we show that the profile curves of rotational GB surfaces can be characterized as the critical curves.
机构:
Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Gansu, Peoples R ChinaNorthwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Gansu, Peoples R China