Some Characterizations of Linear Weingarten Surfaces in 3-Dimensional Space Forms

被引:0
|
作者
Yan Ru Luo
Dan Yang
Xiao Ying Zhu
机构
[1] Liaoning University,School of Mathematics
来源
Results in Mathematics | 2022年 / 77卷
关键词
Surfaces of revolution; biconservative surfaces; linear weingarten surfaces; 53B25; 53C40;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a class of surfaces satisfying an interesting geometric equation A∇H=kH∇H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A \nabla H=kH\nabla H$$\end{document} in non-flat 3-dimensional space forms N3(c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N^{3}(c)$$\end{document}, where A is the shape operator, H is the mean curvature and k is a constant. This kind of surfaces are called generalized biconservative surfaces (or GB surfaces for short). We prove that every GB surface in 3-dimensional space forms is linear Weingarten, and we classify all GB surfaces in 3-dimensional sphere S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {S}}^{3}$$\end{document} and hyperbolic space H3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^{3}$$\end{document}, respectively. Moreover, for a curvature energy in Riemannian 3-space forms, we show that the profile curves of rotational GB surfaces can be characterized as the critical curves.
引用
收藏
相关论文
共 50 条
  • [31] MANNHEIM CURVES IN 3-DIMENSIONAL SPACE FORMS
    Choi, Jin Ho
    Kang, Tae Ho
    Kim, Young Ho
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (04) : 1099 - 1108
  • [32] BACKLUND-TRANSFORMATIONS OF LINEAR WEINGARTEN SURFACES IN MINKOWSKI 3-SPACE
    BUYSKE, SG
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (09) : 4719 - 4724
  • [33] Bertrand curves in 3-dimensional space forms
    Choi, Jin Ho
    Kang, Tae Ho
    Kim, Young Ho
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (03) : 1040 - 1046
  • [34] Linear Weingarten Surfaces in Hyperbolic Three-space
    Kokubu, Masatoshi
    INTERNATIONAL WORKSHOP ON COMPLEX STRUCTURES, INTEGRABILITY AND VECTOR FIELDS, 2011, 1340 : 58 - 65
  • [35] Weingarten and Linear Weingarten Type Tubular Surfaces in E3
    Tuncer, Yilmaz
    Yoon, Dae Won
    Karacan, Murat Kemal
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2011, 2011
  • [36] NEW CHARACTERIZATIONS OF LINEAR WEINGARTEN SPACELIKE HYPERSURFACES IN THE DE SITTER SPACE
    Alias, Luis J.
    de Lima, Henrique F.
    dos Santos, Fabio R.
    PACIFIC JOURNAL OF MATHEMATICS, 2018, 292 (01) : 1 - 19
  • [37] Linear Weingarten surfaces in R3
    Gálvez, JA
    Martínez, A
    Milán, F
    MONATSHEFTE FUR MATHEMATIK, 2003, 138 (02): : 133 - 144
  • [38] Rotational surfaces in a 3-dimensional normed space
    Sakaki, Makoto
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2024, 65 (01): : 23 - 41
  • [39] The Extremal Surfaces in the 3-dimensional Minkowski Space
    谷超豪
    Acta Mathematica Sinica,English Series, 1985, (02) : 173 - 180
  • [40] Rotational surfaces in a 3-dimensional normed space
    Makoto Sakaki
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2024, 65 : 23 - 41