We give a spinorial characterization of isometrically immersed surfaces of arbitrary signature into 3-dimensional pseudo-Riemannian space forms. This generalizes a recent work of the first author for spacelike immersed Lorentzian surfaces in ℝ2,1 to other Lorentzian space forms. We also characterize immersions of Riemannian surfaces in these spaces. From this we can deduce analogous results for timelike immersions of Lorentzian surfaces in space forms of corresponding signature, as well as for spacelike and timelike immersions of surfaces of signature (0, 2), hence achieving a complete spinorial description for this class of pseudo-Riemannian immersions.
机构:
Univ Neuchatel, Inst Math, CH-2000 Neuchatel, SwitzerlandUniv Paris Est Marne la Vallee, Lab Anal & Math Appl, UMR 8050, F-77454 Marne La Vallee 2, France
Lawn, Marie-Amelie
Roth, Julien
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est Marne la Vallee, Lab Anal & Math Appl, UMR 8050, F-77454 Marne La Vallee 2, FranceUniv Paris Est Marne la Vallee, Lab Anal & Math Appl, UMR 8050, F-77454 Marne La Vallee 2, France
机构:
Univ Fed Sao Carlos, Dept Matemat, CEP, Rod Washington Luis ,Km 235, BR-13565905 Sao Carlos, SP, BrazilUniv Fed Sao Carlos, Dept Matemat, CEP, Rod Washington Luis ,Km 235, BR-13565905 Sao Carlos, SP, Brazil
Lobos, Guillermo
Melara, Mynor
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Sao Carlos, Dept Matemat, CEP, Rod Washington Luis ,Km 235, BR-13565905 Sao Carlos, SP, BrazilUniv Fed Sao Carlos, Dept Matemat, CEP, Rod Washington Luis ,Km 235, BR-13565905 Sao Carlos, SP, Brazil
Melara, Mynor
Palmas, Oscar
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, MexicoUniv Fed Sao Carlos, Dept Matemat, CEP, Rod Washington Luis ,Km 235, BR-13565905 Sao Carlos, SP, Brazil