Spinorial Characterizations of Surfaces into 3-dimensional Pseudo-Riemannian Space Forms

被引:0
|
作者
Marie-Amélie Lawn
Julien Roth
机构
[1] Université de Neuchâtel,Institut de Mathématiques
[2] Université Paris-Est Marne-la-Vallée,Laboratoire d’Analyse et de Mathématiques Appliquées (UMR 8050)
关键词
Dirac operator; Killing spinors; Isometric immersions; Gauss and Codazzi equations; 53C27; 53B25; 53B30; 53C80;
D O I
暂无
中图分类号
学科分类号
摘要
We give a spinorial characterization of isometrically immersed surfaces of arbitrary signature into 3-dimensional pseudo-Riemannian space forms. This generalizes a recent work of the first author for spacelike immersed Lorentzian surfaces in ℝ2,1 to other Lorentzian space forms. We also characterize immersions of Riemannian surfaces in these spaces. From this we can deduce analogous results for timelike immersions of Lorentzian surfaces in space forms of corresponding signature, as well as for spacelike and timelike immersions of surfaces of signature (0, 2), hence achieving a complete spinorial description for this class of pseudo-Riemannian immersions.
引用
收藏
页码:185 / 195
页数:10
相关论文
共 50 条