Spinorial Characterizations of Surfaces into 3-dimensional Pseudo-Riemannian Space Forms

被引:0
|
作者
Marie-Amélie Lawn
Julien Roth
机构
[1] Université de Neuchâtel,Institut de Mathématiques
[2] Université Paris-Est Marne-la-Vallée,Laboratoire d’Analyse et de Mathématiques Appliquées (UMR 8050)
关键词
Dirac operator; Killing spinors; Isometric immersions; Gauss and Codazzi equations; 53C27; 53B25; 53B30; 53C80;
D O I
暂无
中图分类号
学科分类号
摘要
We give a spinorial characterization of isometrically immersed surfaces of arbitrary signature into 3-dimensional pseudo-Riemannian space forms. This generalizes a recent work of the first author for spacelike immersed Lorentzian surfaces in ℝ2,1 to other Lorentzian space forms. We also characterize immersions of Riemannian surfaces in these spaces. From this we can deduce analogous results for timelike immersions of Lorentzian surfaces in space forms of corresponding signature, as well as for spacelike and timelike immersions of surfaces of signature (0, 2), hence achieving a complete spinorial description for this class of pseudo-Riemannian immersions.
引用
收藏
页码:185 / 195
页数:10
相关论文
共 50 条
  • [41] Darboux Associated Curves of a Null Curve on Pseudo-Riemannian Space Forms
    Qian, Jinhua
    Fu, Xueshan
    Dal Jung, Seoung
    MATHEMATICS, 2020, 8 (03)
  • [42] SPINORIAL REPRESENTATION OF SUBMANIFOLDS IN RIEMANNIAN SPACE FORMS
    Bayard, Pierre
    Lawn, Marie-Amelie
    Roth, Julien
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 291 (01) : 51 - 80
  • [43] On biconservative surfaces in 3-dimensional space forms
    Fetcu, Dorel
    Nistor, Simona
    Oniciuc, Cezar
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2016, 24 (05) : 1027 - 1045
  • [44] Triharmonic Riemannian submersions from 3-dimensional space forms
    Miura, Tomoya
    Maeta, Shun
    ADVANCES IN GEOMETRY, 2021, 21 (02) : 163 - 168
  • [45] Leibniz algebras with pseudo-Riemannian bilinear forms
    Lin, Jie
    Chen, Zhiqi
    FRONTIERS OF MATHEMATICS IN CHINA, 2010, 5 (01) : 103 - 115
  • [46] Spinorial representation of surfaces into 4-dimensional space forms
    Pierre Bayard
    Marie-Amélie Lawn
    Julien Roth
    Annals of Global Analysis and Geometry, 2013, 44 : 433 - 453
  • [47] Spinorial representation of surfaces into 4-dimensional space forms
    Bayard, Pierre
    Lawn, Marie-Amelie
    Roth, Julien
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2013, 44 (04) : 433 - 453
  • [48] Leibniz algebras with pseudo-Riemannian bilinear forms
    Jie Lin
    Zhiqi Chen
    Frontiers of Mathematics in China, 2010, 5 : 103 - 115
  • [49] On minimality and scalar curvature of CMC triharmonic hypersurfaces in pseudo-Riemannian space forms
    Du, Li
    Luo, Yong
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (04) : 1793 - 1808
  • [50] Bertrand surfaces with a pseudo-Riemannian metric of revolution
    Zagryadskii O.A.
    Moscow University Mathematics Bulletin, 2015, 70 (1) : 49 - 52