Periodic almost-Schrödinger equation for quasicrystals

被引:0
|
作者
Igor V. Blinov
机构
[1] Moscow Institute of Physics and Technology,
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A new method for finding electronic structure and wavefunctions of electrons in quasiperiodic potential is introduced. To obtain results it uses slightly modified Schrödinger equation in spaces of dimensionality higher than physical space. It enables to get exact results for quasicrystals without expensive non-exact calculations.
引用
收藏
相关论文
共 50 条
  • [41] Hyperbolic Schrödinger equation
    Zheng Z.
    Xuegang Y.
    Advances in Applied Clifford Algebras, 2004, 14 (2) : 207 - 213
  • [42] Dispersive bounds for the three-dimensional Schrödinger equation with almost critical potentials
    M. Goldberg
    Geometric & Functional Analysis GAFA, 2006, 16 : 517 - 536
  • [43] On the 1D Cubic Nonlinear Schrödinger Equation in an Almost Critical Space
    Shaoming Guo
    Journal of Fourier Analysis and Applications, 2017, 23 : 91 - 124
  • [44] Existence of the time periodic solution for damped Schrödinger-Boussinesq equation
    Guo, Boling
    Du, Xianyun
    Communications in Nonlinear Science and Numerical Simulation, 2000, 5 (04) : 179 - 183
  • [45] Integration of the Negative Order Nonlinear Schrödinger Equation in the Class of Periodic Functions
    G. U. Urazboev
    M. M. Khasanov
    A. K. Babadjanova
    Lobachevskii Journal of Mathematics, 2024, 45 (10) : 5305 - 5312
  • [46] Robustness and stability of doubly periodic patterns of the focusing nonlinear Schrödinger equation
    Yin, H. M.
    Li, J. H.
    Zheng, Z.
    Chiang, K. S.
    Chow, K. W.
    CHAOS, 2024, 34 (01)
  • [47] Stability of periodic waves for the defocusing fractional cubic nonlinear Schrõdinger equation
    Borluk, Handan
    Muslu, Gulcin M.
    Natali, Fabio
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 133
  • [48] The implementation of the unified transform to the nonlinear Schrödinger equation with periodic initial conditions
    B. Deconinck
    A. S. Fokas
    J. Lenells
    Letters in Mathematical Physics, 2021, 111
  • [49] Quasi-periodic solutions with prescribed frequency in a nonlinear Schrödinger equation
    Xiu-Fang Ren
    Science China Mathematics, 2010, 53 : 3067 - 3084
  • [50] Growth bound and nonlinear smoothing for the periodic derivative nonlinear Schrödinger equation
    Bradley Isom
    Dionyssios Mantzavinos
    Atanas Stefanov
    Mathematische Annalen, 2024, 388 : 2289 - 2329