Periodic almost-Schrödinger equation for quasicrystals

被引:0
|
作者
Igor V. Blinov
机构
[1] Moscow Institute of Physics and Technology,
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A new method for finding electronic structure and wavefunctions of electrons in quasiperiodic potential is introduced. To obtain results it uses slightly modified Schrödinger equation in spaces of dimensionality higher than physical space. It enables to get exact results for quasicrystals without expensive non-exact calculations.
引用
收藏
相关论文
共 50 条
  • [21] Nonlinear perturbations of a periodic Schrödinger equation with supercritical growth
    Giovany M. Figueiredo
    Olimpio H. Miyagaki
    Sandra Im. Moreira
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 2379 - 2394
  • [22] Orbital stability of periodic waves for the nonlinear Schrödinger equation
    Thierry Gallay
    Mariana Hǎrǎgus
    Journal of Dynamics and Differential Equations, 2007, 19 : 825 - 865
  • [23] Anderson Transitions for a Family of Almost Periodic Schrödinger Equations in the Adiabatic Case
    Alexander Fedotov
    Frédéric Klopp
    Communications in Mathematical Physics, 2002, 227 : 1 - 92
  • [24] Periodic wave solutions of generalized derivative nonlinear Schrödinger equation
    Department of Computer Science, East China Normal University, Shanghai 200062, China
    不详
    Chin. Phys. Lett., 2008, 11 (3844-3847):
  • [25] COMPREHENSIVE CONSIDERATION OF THE NEW PERIODIC SOLUTION OF THE NONLINEAR SCHRDINGER EQUATION
    汪存启
    李翊神
    ActaMathematicaScientia, 1987, (04) : 375 - 381
  • [26] Nonautonomous and non periodic Schrödinger equation with indefinite linear part
    L. A. Maia
    J. C. Oliveira Junior
    R. Ruviaro
    Journal of Fixed Point Theory and Applications, 2017, 19 : 17 - 36
  • [27] Quasi-periodic waves to the defocusing nonlinear Schrödinger equation
    Zhang, Ying-Nan
    Hu, Xing-Biao
    Sun, Jian-Qing
    NONLINEARITY, 2024, 37 (03)
  • [28] On transformation operators for the Schrödinger equation with an additional periodic complex potential
    A. Kh. Khanmamedov
    D. H. Orudjov
    Boletín de la Sociedad Matemática Mexicana, 2023, 29
  • [29] Periodic Waves of a Discrete Higher Order Nonlinear Schrdinger Equation
    Robert Contete
    K.W. Chow
    CommunicationsinTheoreticalPhysics, 2006, 46 (12) : 961 - 965
  • [30] Quasi-Periodic Solutions for Fractional Nonlinear Schrödinger Equation
    Xindong Xu
    Journal of Dynamics and Differential Equations, 2018, 30 : 1855 - 1871