On the 1D Cubic Nonlinear Schrödinger Equation in an Almost Critical Space

被引:0
|
作者
Shaoming Guo
机构
[1] University of Bonn,Institute of Mathematics
关键词
Cubic nonlinear Schrödinger equation; Almost global well-posedness; Modulation spaces; Restriction estimates; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Cauchy problem for the one dimensional cubic nonlinear Schrödinger equation iut+uxx-|u|2u=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$iu_t+u_{xx}-|u|^2u=0$$\end{document}. As the first step local well-posedness in the modulation space M2,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{2,p}$$\end{document} (2≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le p<\infty $$\end{document}) is derived (see Theorem 1.4), which covers all the subcritical cases. Afterwards in order to approach the endpoint case, we will prove the almost global well-posedness in some Orlicz type space (see Theorem 1.8), which is a natural generalization of M2,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{2,p}$$\end{document}, and is almost critical from the viewpoint of scaling. The new ingredient is an endpoint version of the two dimensional restriction estimate (see Lemma 3.7).
引用
收藏
页码:91 / 124
页数:33
相关论文
共 50 条
  • [1] On the 1D Cubic Nonlinear Schrodinger Equation in an Almost Critical Space
    Guo, Shaoming
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2017, 23 (01) : 91 - 124
  • [2] Combined method for solving of 1d nonlinear schrödinger equation
    Trofimov, Vyacheslav A
    Trykin, Evgeny M
    Lecture Notes in Electrical Engineering, 2014, 307 : 173 - 188
  • [3] A fully discrete low-regularity integrator for the 1D periodic cubic nonlinear Schrödinger equation
    Buyang Li
    Yifei Wu
    Numerische Mathematik, 2021, 149 : 151 - 183
  • [4] 1D solitons in cubic-quintic fractional nonlinear Schrödinger model
    V. A. Stephanovich
    W. Olchawa
    E. V. Kirichenko
    V. K. Dugaev
    Scientific Reports, 12
  • [5] Collapse in the nonlinear Schrödinger equation of critical dimension {σ=1, D=2}
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics Letters, 2002, 75 : 357 - 361
  • [6] Almost Sure Well-Posedness and Scattering of the 3D Cubic Nonlinear Schrödinger Equation
    Jia Shen
    Avy Soffer
    Yifei Wu
    Communications in Mathematical Physics, 2023, 397 : 547 - 605
  • [7] Concentration of coupled cubic nonlinear Schrödinger equation
    Xiao-guang Li
    Jian Zhang
    Applied Mathematics and Mechanics, 2005, 26 : 1357 - 1362
  • [8] Focusing Quantum Many-body Dynamics: The Rigorous Derivation of the 1D Focusing Cubic Nonlinear Schrödinger Equation
    Xuwen Chen
    Justin Holmer
    Archive for Rational Mechanics and Analysis, 2016, 221 : 631 - 676
  • [9] Inverse source problem for the 1D Schrödinger equation
    Avdonin S.A.
    Mikhaylov V.S.
    Journal of Mathematical Sciences, 2012, 185 (4) : 513 - 516
  • [10] On Selection of Standing Wave at Small Energy in the 1D Cubic Schrödinger Equation with a Trapping Potential
    Scipio Cuccagna
    Masaya Maeda
    Communications in Mathematical Physics, 2022, 396 : 1135 - 1186