On the 1D Cubic Nonlinear Schrödinger Equation in an Almost Critical Space

被引:0
|
作者
Shaoming Guo
机构
[1] University of Bonn,Institute of Mathematics
关键词
Cubic nonlinear Schrödinger equation; Almost global well-posedness; Modulation spaces; Restriction estimates; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Cauchy problem for the one dimensional cubic nonlinear Schrödinger equation iut+uxx-|u|2u=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$iu_t+u_{xx}-|u|^2u=0$$\end{document}. As the first step local well-posedness in the modulation space M2,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{2,p}$$\end{document} (2≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le p<\infty $$\end{document}) is derived (see Theorem 1.4), which covers all the subcritical cases. Afterwards in order to approach the endpoint case, we will prove the almost global well-posedness in some Orlicz type space (see Theorem 1.8), which is a natural generalization of M2,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{2,p}$$\end{document}, and is almost critical from the viewpoint of scaling. The new ingredient is an endpoint version of the two dimensional restriction estimate (see Lemma 3.7).
引用
收藏
页码:91 / 124
页数:33
相关论文
共 50 条