On the 1D Cubic Nonlinear Schrödinger Equation in an Almost Critical Space

被引:0
|
作者
Shaoming Guo
机构
[1] University of Bonn,Institute of Mathematics
关键词
Cubic nonlinear Schrödinger equation; Almost global well-posedness; Modulation spaces; Restriction estimates; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Cauchy problem for the one dimensional cubic nonlinear Schrödinger equation iut+uxx-|u|2u=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$iu_t+u_{xx}-|u|^2u=0$$\end{document}. As the first step local well-posedness in the modulation space M2,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{2,p}$$\end{document} (2≤p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\le p<\infty $$\end{document}) is derived (see Theorem 1.4), which covers all the subcritical cases. Afterwards in order to approach the endpoint case, we will prove the almost global well-posedness in some Orlicz type space (see Theorem 1.8), which is a natural generalization of M2,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{2,p}$$\end{document}, and is almost critical from the viewpoint of scaling. The new ingredient is an endpoint version of the two dimensional restriction estimate (see Lemma 3.7).
引用
收藏
页码:91 / 124
页数:33
相关论文
共 50 条
  • [41] Shannon entropy and fisher information of solitons for the cubic nonlinear Schrödinger equation
    Yamano, Takuya
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (07):
  • [42] Asymptotic stability of solitons to 1D nonlinear Schrödinger equations in subcritical case
    Ze Li
    Frontiers of Mathematics in China, 2020, 15 : 923 - 957
  • [43] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [44] Multiparameter family of collapsing solutions to the critical nonlinear Schrödinger equation in dimension D=2
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 2003, 97 : 194 - 203
  • [45] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [46] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40
  • [47] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66
  • [48] Dispersive decay for the energy-critical nonlinear Schrödinger equation
    Kowalski, Matthew
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 429 : 392 - 426
  • [49] Rogue waves in a reverse space nonlocal nonlinear Schrödinger equation
    Wang, Xin
    He, Jingsong
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 469
  • [50] Ground States for the Nonlinear Schrödinger Equation with Critical Growth and Potential
    Kang, Jin-Cai
    Tang, Chun-Lei
    RESULTS IN MATHEMATICS, 2024, 79 (04)