Oscillation of fourth-order strongly noncanonical differential equations with delay argument

被引:0
|
作者
B. Baculikova
J. Dzurina
机构
[1] Technical University of Košice,Department of Mathematics, Faculty of Electrical Engineering and Informatics
关键词
Noncanonical operator; Fourth order differential equations; Oscillation; 34K11; 34C10;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to study oscillatory properties of the fourth-order strongly noncanonical equation of the form (r3(t)(r2(t)(r1(t)y′(t))′)′)′+p(t)y(τ(t))=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bigl(r_{3}(t) \bigl(r_{2}(t) \bigl(r_{1}(t)y'(t) \bigr)' \bigr)' \bigr)'+p(t)y \bigl( \tau (t) \bigr)=0, $$\end{document} where ∫∞1ri(s)ds<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\int ^{\infty }\frac{1}{r_{i}(s)}\,\mathrm {d}{s}<\infty $\end{document}, i=1,2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i=1,2,3$\end{document}. Reducing possible classes of the nonoscillatory solutions, new oscillatory criteria are established.
引用
收藏
相关论文
共 50 条
  • [41] OSCILLATION CRITERIA OF FOURTH-ORDER NONLINEAR SEMI-NONCANONICAL NEUTRAL DIFFERENTIAL EQUATIONS VIA A CANONICAL TRANSFORM
    Purushothaman, Ganesh
    Suresh, Kannan
    Tunc, Ercan
    Thandapani, Ethiraju
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 2023 (70)
  • [42] Oscillation of second-order nonlinear noncanonical differential equations with deviating argument
    Baculikova, Blanka
    APPLIED MATHEMATICS LETTERS, 2019, 91 : 68 - 75
  • [43] Oscillation of Second-Order Canonical and Noncanonical Delay Differential Equations
    Zafer, A.
    Candan, T.
    Gurkan, Z. N.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [44] OSCILLATION OF FOURTH-ORDER DYNAMIC EQUATIONS
    Grace, Said R.
    Bohner, Martin
    Sun, Shurong
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2010, 39 (04): : 545 - 553
  • [45] OSCILLATION THEOREMS FOR FOURTH-ORDER DELAY DYNAMIC EQUATIONS ON TIME SCALES
    Li, Tongxing
    Thandapani, Ethiraju
    Tang, Shuhong
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 3 (03): : 190 - 199
  • [46] Oscillatory Behavior of Fourth-Order Differential Equations with Neutral Delay
    Moaaz, Osama
    El-Nabulsi, Rami Ahmad
    Bazighifan, Omar
    SYMMETRY-BASEL, 2020, 12 (03):
  • [47] Asymptotic Properties of Solutions of Fourth-Order Delay Differential Equations
    Cesarano, Clemente
    Pinelas, Sandra
    Al-Showaikh, Faisal
    Bazighifan, Omar
    SYMMETRY-BASEL, 2019, 11 (05):
  • [48] On stability of solutions of certain fourth-order delay differential equations
    Tunc, Cemil
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2006, 27 (08) : 1141 - 1148
  • [49] STABILITY OF SOLUTIONS TO CERTAIN FOURTH-ORDER DELAY DIFFERENTIAL EQUATIONS
    Huiyan Kang (School of Math. and Physics
    Annals of Applied Mathematics, 2010, (04) : 407 - 413
  • [50] On stability of solutions of certain fourth-order delay differential equations
    Cemil Tunç
    Applied Mathematics and Mechanics, 2006, 27 : 1141 - 1148