Oscillation of fourth-order strongly noncanonical differential equations with delay argument

被引:0
|
作者
B. Baculikova
J. Dzurina
机构
[1] Technical University of Košice,Department of Mathematics, Faculty of Electrical Engineering and Informatics
关键词
Noncanonical operator; Fourth order differential equations; Oscillation; 34K11; 34C10;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to study oscillatory properties of the fourth-order strongly noncanonical equation of the form (r3(t)(r2(t)(r1(t)y′(t))′)′)′+p(t)y(τ(t))=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bigl(r_{3}(t) \bigl(r_{2}(t) \bigl(r_{1}(t)y'(t) \bigr)' \bigr)' \bigr)'+p(t)y \bigl( \tau (t) \bigr)=0, $$\end{document} where ∫∞1ri(s)ds<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\int ^{\infty }\frac{1}{r_{i}(s)}\,\mathrm {d}{s}<\infty $\end{document}, i=1,2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i=1,2,3$\end{document}. Reducing possible classes of the nonoscillatory solutions, new oscillatory criteria are established.
引用
收藏
相关论文
共 50 条
  • [31] Oscillation of certain fourth-order functional differential equations
    Agarwal R.P.
    Grace S.R.
    O'Regan D.
    Ukrainian Mathematical Journal, 2007, 59 (3) : 315 - 342
  • [32] Oscillation criteria for fourth-order functional differential equations
    Grace, Said R.
    Bohner, Martin
    Liu, Ailian
    MATHEMATICA SLOVACA, 2013, 63 (06) : 1303 - 1320
  • [33] On oscillation of third-order noncanonical delay differential equations
    Grace, Said R.
    Jadlovska, Irena
    Zafer, Agacik
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 362
  • [34] OSCILLATION CRITERIA FOR FOURTH-ORDER NONLINEAR DELAY DYNAMIC EQUATIONS
    Qi, Yunsong
    Yu, Jinwei
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [35] Oscillation of fourth-order nonlinear neutral delay dynamic equations
    Grace, S. R.
    Zafer, A.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (02): : 331 - 339
  • [36] FOURTH-ORDER NONLINEAR STRONGLY NON-CANONICAL DELAY DIFFERENTIAL EQUATIONS: NEW OSCILLATION CRITERIA VIA CANONICAL TRANSFORM
    Nithyakala, Gunasekaran
    Ayyappan, Govindasamy
    Alzabut, Jehad
    Thandapani, Ethiraju
    MATHEMATICA SLOVACA, 2024, 74 (01) : 115 - 126
  • [37] Oscillation Criteria of Solutions of Fourth-Order Neutral Differential Equations
    Almutairi, Alanoud
    Bazighifan, Omar
    Almarri, Barakah
    Aiyashi, M. A.
    Nonlaopon, Kamsing
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [38] Oscillation theorems for fourth-order quasilinear ordinary differential equations
    Kamo, KI
    Usami, H
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2002, 39 (3-4) : 385 - 406
  • [39] Oscillation criteria for fourth-order differential equations with middle term
    Ben Amara, Jamel
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (01) : 42 - 46
  • [40] Oscillation of fourth-order neutral differential equations with damping term
    Bartusek, Miroslav
    Dosla, Zuzana
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (18) : 14341 - 14355