Oscillation of fourth-order strongly noncanonical differential equations with delay argument

被引:0
|
作者
B. Baculikova
J. Dzurina
机构
[1] Technical University of Košice,Department of Mathematics, Faculty of Electrical Engineering and Informatics
关键词
Noncanonical operator; Fourth order differential equations; Oscillation; 34K11; 34C10;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to study oscillatory properties of the fourth-order strongly noncanonical equation of the form (r3(t)(r2(t)(r1(t)y′(t))′)′)′+p(t)y(τ(t))=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bigl(r_{3}(t) \bigl(r_{2}(t) \bigl(r_{1}(t)y'(t) \bigr)' \bigr)' \bigr)'+p(t)y \bigl( \tau (t) \bigr)=0, $$\end{document} where ∫∞1ri(s)ds<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\int ^{\infty }\frac{1}{r_{i}(s)}\,\mathrm {d}{s}<\infty $\end{document}, i=1,2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$i=1,2,3$\end{document}. Reducing possible classes of the nonoscillatory solutions, new oscillatory criteria are established.
引用
收藏
相关论文
共 50 条
  • [21] Sharp oscillation theorem for fourth-order linear delay differential equations
    Jadlovska, Irena
    Dzurina, Jozef
    Graef, John R.
    Grace, Said R.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [22] On the Oscillation of Fourth-Order Delay Differential Equations via Riccati Transformation
    Mazen, Mohamed
    El-Sheikh, Mohamed M. A.
    Tallah, Samah Euat
    Ismail, Gamal A. F.
    MATHEMATICS, 2025, 13 (03)
  • [23] New Oscillation Criteria for Neutral Delay Differential Equations of Fourth-Order
    Althubiti, Saeed
    Bazighifan, Omar
    Alotaibi, Hammad
    Awrejcewicz, Jan
    SYMMETRY-BASEL, 2021, 13 (07):
  • [24] New oscillation criteria for nonlinear delay differential equations of fourth-order
    Moaaz, Osama
    Muhib, Ali
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 377
  • [25] OSCILLATION OF FOURTH-ORDER QUASILINEAR DIFFERENTIAL EQUATIONS
    Li, Tongxing
    Rogovchenko, Yuriy V.
    Zhang, Chenghui
    MATHEMATICA BOHEMICA, 2015, 140 (04): : 405 - 418
  • [26] Oscillation theorems for fourth-order delay differential equations with a negative middle term
    Dzurina, Jozef
    Jadlovska, Irena
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 7830 - 7842
  • [27] Oscillation theorems for fourth-order quasi-linear delay differential equations
    Masood, Fahd
    Moaaz, Osama
    Santra, Shyam Sundar
    Fernandez-Gamiz, U.
    El-Metwally, Hamdy A.
    AIMS MATHEMATICS, 2023, 8 (07): : 16291 - 16307
  • [28] On Oscillation of Fourth Order Delay Differential Equations
    Lafci Buyukkahraman, M.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (02): : 321 - 333
  • [29] Oscillation Theorems for Nonlinear Differential Equations of Fourth-Order
    Moaaz, Osama
    Dassios, Ioannis
    Bazighifan, Omar
    Muhib, Ali
    MATHEMATICS, 2020, 8 (04)
  • [30] An Improved Criterion for the Oscillation of Fourth-Order Differential Equations
    Bazighifan, Omar
    Ruggieri, Marianna
    Scapellato, Andrea
    MATHEMATICS, 2020, 8 (04)