Multi-modal RGB–Depth–Thermal Human Body Segmentation

被引:0
|
作者
Cristina Palmero
Albert Clapés
Chris Bahnsen
Andreas Møgelmose
Thomas B. Moeslund
Sergio Escalera
机构
[1] UB,Dept. Matemàtica Aplicada i Anàlisi
[2] Computer Vision Center,undefined
[3] Aalborg University,undefined
来源
关键词
Human body segmentation; RGB; Depth; Thermal;
D O I
暂无
中图分类号
学科分类号
摘要
This work addresses the problem of human body segmentation from multi-modal visual cues as a first stage of automatic human behavior analysis. We propose a novel RGB–depth–thermal dataset along with a multi-modal segmentation baseline. The several modalities are registered using a calibration device and a registration algorithm. Our baseline extracts regions of interest using background subtraction, defines a partitioning of the foreground regions into cells, computes a set of image features on those cells using different state-of-the-art feature extractions, and models the distribution of the descriptors per cell using probabilistic models. A supervised learning algorithm then fuses the output likelihoods over cells in a stacked feature vector representation. The baseline, using Gaussian mixture models for the probabilistic modeling and Random Forest for the stacked learning, is superior to other state-of-the-art methods, obtaining an overlap above 75 % on the novel dataset when compared to the manually annotated ground-truth of human segmentations.
引用
收藏
页码:217 / 239
页数:22
相关论文
共 50 条
  • [21] PIMMS: Permutation Invariant Multi-modal Segmentation
    Varsavsky, Thomas
    Eaton-Rosen, Zach
    Sudre, Carole H.
    Nachev, Parashkev
    Cardoso, M. Jorge
    DEEP LEARNING IN MEDICAL IMAGE ANALYSIS AND MULTIMODAL LEARNING FOR CLINICAL DECISION SUPPORT, DLMIA 2018, 2018, 11045 : 201 - 209
  • [22] Multi-modal Transformer for Brain Tumor Segmentation
    Cho, Jihoon
    Park, Jinah
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2022, 2023, 13769 : 138 - 148
  • [23] Multi-modal PixelNet for Brain Tumor Segmentation
    Islam, Mobarakol
    Ren, Hongliang
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2017, 2018, 10670 : 298 - 308
  • [24] A Deep Multi-Modal Learning Method and a New RGB-Depth Data Set for Building Roof Extraction
    Khoshboresh-Masouleh, Mehdi
    Shah-Hosseini, Reza
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2021, 87 (10): : 759 - 766
  • [25] Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion
    Sun, Peng
    Zhang, Wenhu
    Wang, Huanyu
    Li, Songyuan
    Li, Xi
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 1407 - 1417
  • [26] MMPL-Net: multi-modal prototype learning for one-shot RGB-D segmentation
    Shan, Dexing
    Zhang, Yunzhou
    Liu, Xiaozheng
    Liu, Shitong
    Coleman, Sonya A.
    Kerr, Dermot
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (14): : 10297 - 10310
  • [27] MMPL-Net: multi-modal prototype learning for one-shot RGB-D segmentation
    Dexing Shan
    Yunzhou Zhang
    Xiaozheng Liu
    Shitong Liu
    Sonya A. Coleman
    Dermot Kerr
    Neural Computing and Applications, 2023, 35 : 10297 - 10310
  • [28] Multi-Task and Multi-Modal Learning for RGB Dynamic Gesture Recognition
    Fan, Dinghao
    Lu, Hengjie
    Xu, Shugong
    Cao, Shan
    IEEE SENSORS JOURNAL, 2021, 21 (23) : 27026 - 27036
  • [29] Food Image Segmentation Using Multi-Modal Imaging Sensors with Color and Thermal Data
    Raju, Viprav B. B.
    Imtiaz, Masudul H. H.
    Sazonov, Edward
    SENSORS, 2023, 23 (02)
  • [30] Multi-view Multi-modal Approach Based on 5S-CNN and BiLSTM Using Skeleton, Depth and RGB Data for Human Activity Recognition
    Kumar, Rahul
    Kumar, Shailender
    WIRELESS PERSONAL COMMUNICATIONS, 2023, 130 (02) : 1141 - 1159