PIMMS: Permutation Invariant Multi-modal Segmentation

被引:12
|
作者
Varsavsky, Thomas [1 ]
Eaton-Rosen, Zach [1 ,2 ]
Sudre, Carole H. [1 ,2 ,3 ]
Nachev, Parashkev [4 ]
Cardoso, M. Jorge [1 ,2 ]
机构
[1] UCL, CMIC, London, England
[2] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[3] UCL, Dementia Res Ctr, London, England
[4] UCL, Inst Neurol, London, England
基金
英国惠康基金;
关键词
DISEASE;
D O I
10.1007/978-3-030-00889-5_23
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In a research context, image acquisition will often involve a pre-defined static protocol and the data will be of high quality. If we are to build applications that work in hospitals without significant operational changes in care delivery, algorithms should be designed to cope with the available data in the best possible way. In a clinical environment, imaging protocols are highly flexible, with MRI sequences commonly missing appropriate sequence labeling (e.g. T1, T2, FLAIR). To this end we introduce PIMMS, a Permutation Invariant Multi-Modal Segmentation technique that is able to perform inference over sets of MRI scans without using modality labels. We present results which show that our convolutional neural network can, in some settings, outperform a baseline model which utilizes modality labels, and achieve comparable performance otherwise.
引用
收藏
页码:201 / 209
页数:9
相关论文
共 50 条
  • [1] Multi-modal Complete Breast Segmentation
    Zolfagharnasab, Hooshiar
    Monteiro, Joao P.
    Teixeira, Joao F.
    Borlinhas, Filipa
    Oliveira, Helder P.
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2017), 2017, 10255 : 519 - 527
  • [2] Multi-modal semantic image segmentation
    Pemasiri, Akila
    Kien Nguyen
    Sridharan, Sridha
    Fookes, Clinton
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 202
  • [3] A Multi-Modal System for Road Detection and Segmentation
    Hu, Xiao
    Rodriguez F, Sergio A.
    Gepperth, Alexander
    2014 IEEE INTELLIGENT VEHICLES SYMPOSIUM PROCEEDINGS, 2014, : 1365 - 1370
  • [4] Multi-modal Transformer for Brain Tumor Segmentation
    Cho, Jihoon
    Park, Jinah
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2022, 2023, 13769 : 138 - 148
  • [5] Multi-modal PixelNet for Brain Tumor Segmentation
    Islam, Mobarakol
    Ren, Hongliang
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2017, 2018, 10670 : 298 - 308
  • [6] A multi-modal approach to story segmentation for news video
    Chaisorn, L
    Chua, TS
    Lee, CH
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2003, 6 (02): : 187 - 208
  • [7] Unpaired multi-modal tumor segmentation with structure adaptation
    Zhou, Pei
    Chen, Houjin
    Li, Yanfeng
    Peng, Yahui
    APPLIED INTELLIGENCE, 2023, 53 (04) : 3639 - 3651
  • [8] Flexible Multi-modal Graph-Based Segmentation
    Sanberg, Willem P.
    Do, Luat
    de With, Peter H. N.
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, ACIVS 2013, 2013, 8192 : 492 - 503
  • [9] Multi-Modal Glioblastoma Segmentation: Man versus Machine
    Porz, Nicole
    Bauer, Stefan
    Pica, Alessia
    Schucht, Philippe
    Beck, Juergen
    Verma, Rajeev Kumar
    Slotboom, Johannes
    Reyes, Mauricio
    Wiest, Roland
    PLOS ONE, 2014, 9 (05):
  • [10] A framework for unsupervised segmentation of multi-modal medical images
    El-Baz, Ayman
    Farag, Aly
    Ali, Asem
    Gimel'farb, Georgy
    Casanova, Manuel
    COMPUTER VISION APPROACHES TO MEDICAL IMAGE ANALYSIS, 2006, 4241 : 120 - 131