Multi-modal RGB–Depth–Thermal Human Body Segmentation

被引:0
|
作者
Cristina Palmero
Albert Clapés
Chris Bahnsen
Andreas Møgelmose
Thomas B. Moeslund
Sergio Escalera
机构
[1] UB,Dept. Matemàtica Aplicada i Anàlisi
[2] Computer Vision Center,undefined
[3] Aalborg University,undefined
来源
关键词
Human body segmentation; RGB; Depth; Thermal;
D O I
暂无
中图分类号
学科分类号
摘要
This work addresses the problem of human body segmentation from multi-modal visual cues as a first stage of automatic human behavior analysis. We propose a novel RGB–depth–thermal dataset along with a multi-modal segmentation baseline. The several modalities are registered using a calibration device and a registration algorithm. Our baseline extracts regions of interest using background subtraction, defines a partitioning of the foreground regions into cells, computes a set of image features on those cells using different state-of-the-art feature extractions, and models the distribution of the descriptors per cell using probabilistic models. A supervised learning algorithm then fuses the output likelihoods over cells in a stacked feature vector representation. The baseline, using Gaussian mixture models for the probabilistic modeling and Random Forest for the stacked learning, is superior to other state-of-the-art methods, obtaining an overlap above 75 % on the novel dataset when compared to the manually annotated ground-truth of human segmentations.
引用
收藏
页码:217 / 239
页数:22
相关论文
共 50 条
  • [31] Multi-view Multi-modal Approach Based on 5S-CNN and BiLSTM Using Skeleton, Depth and RGB Data for Human Activity Recognition
    Rahul Kumar
    Shailender Kumar
    Wireless Personal Communications, 2023, 130 : 1141 - 1159
  • [32] HuMAn: Complex Activity Recognition with Multi-Modal Multi-Positional Body Sensing
    Bharti, Pratool
    De, Debraj
    Chellappan, Sriram
    Das, Sajal K.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2019, 18 (04) : 857 - 870
  • [33] Multi-modal Characteristic Guided Depth Completion Network
    Lee, Yongjin
    Park, Seokjun
    Kang, Beomgu
    Park, HyunWook
    COMPUTER VISION - ACCV 2022, PT III, 2023, 13843 : 593 - 607
  • [34] A multi-modal approach to story segmentation for news video
    Chaisorn, L
    Chua, TS
    Lee, CH
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2003, 6 (02): : 187 - 208
  • [35] Unpaired multi-modal tumor segmentation with structure adaptation
    Zhou, Pei
    Chen, Houjin
    Li, Yanfeng
    Peng, Yahui
    APPLIED INTELLIGENCE, 2023, 53 (04) : 3639 - 3651
  • [36] Flexible Multi-modal Graph-Based Segmentation
    Sanberg, Willem P.
    Do, Luat
    de With, Peter H. N.
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, ACIVS 2013, 2013, 8192 : 492 - 503
  • [37] Multi-Modal Glioblastoma Segmentation: Man versus Machine
    Porz, Nicole
    Bauer, Stefan
    Pica, Alessia
    Schucht, Philippe
    Beck, Juergen
    Verma, Rajeev Kumar
    Slotboom, Johannes
    Reyes, Mauricio
    Wiest, Roland
    PLOS ONE, 2014, 9 (05):
  • [38] A framework for unsupervised segmentation of multi-modal medical images
    El-Baz, Ayman
    Farag, Aly
    Ali, Asem
    Gimel'farb, Georgy
    Casanova, Manuel
    COMPUTER VISION APPROACHES TO MEDICAL IMAGE ANALYSIS, 2006, 4241 : 120 - 131
  • [39] A Multi-Modal Approach to Story Segmentation for News Video
    Lekha Chaisorn
    Tat-Seng Chua
    Chin-Hui Lee
    World Wide Web, 2003, 6 : 187 - 208
  • [40] Multi-modal temporal action segmentation for manufacturing scenarios
    Romeo, Laura
    Marani, Roberto
    Perri, Anna Gina
    Gall, Juergen
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 148