Autocovariance estimation in the presence of changepoints

被引:0
|
作者
Colin Gallagher
Rebecca Killick
Robert Lund
Xueheng Shi
机构
[1] Clemson University,School of Mathematics and Statistics
[2] Lancaster University,Department of Mathematics and Statistics
[3] University of California,Department of Statistics
[4] Santa Cruz,undefined
关键词
Autoregression; Differencing; Robustness; Rolling Windows; Segmentation; Yule-Walker Estimates;
D O I
暂无
中图分类号
学科分类号
摘要
This article studies estimation of a stationary autocovariance structure in the presence of an unknown number of mean shifts. Here, a Yule–Walker moment estimator for the autoregressive parameters in a dependent time series contaminated by mean shift changepoints is proposed and studied. The estimator is based on first order differences of the series and is proven consistent and asymptotically normal when the number of changepoints m and the series length N satisfy m/N→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m/N \rightarrow 0$$\end{document} as N→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \rightarrow \infty$$\end{document}.
引用
收藏
页码:1021 / 1040
页数:19
相关论文
共 50 条
  • [21] Detecting changes in mean in the presence of time-varying autocovariance
    McGonigle, Euan T.
    Killick, Rebecca
    Nunes, Matthew A.
    STAT, 2021, 10 (01):
  • [22] A ROBUST SPECTRAL ESTIMATION BY MODELING AN ESTIMATED AUTOCOVARIANCE WITH AN ARMA MODEL
    PARK, S
    GERHARDT, LA
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1989, 37 (02): : 181 - 191
  • [23] ESTIMATION OF AUTOCOVARIANCE MATRICES FOR INFINITE DIMENSIONAL VECTOR LINEAR PROCESS
    Bhattacharjee, Monika
    Bose, Arup
    JOURNAL OF TIME SERIES ANALYSIS, 2014, 35 (03) : 262 - 281
  • [24] Measurement Difference Autocovariance Method for Noise Covariance Matrices Estimation
    Dunik, Jindrich
    Straka, Ondrej
    Kost, Oliver
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 365 - 370
  • [25] Joint modeling of longitudinal data and informative dropout time in the presence of multiple changepoints
    Ghosh, Pulak
    Ghosh, Kaushik
    Tiwari, Ram C.
    STATISTICS IN MEDICINE, 2011, 30 (06) : 611 - 626
  • [26] A generalized autocovariance least-squares method for covariance estimation
    Akesson, Bemt M.
    Jorgensen, John Bagterp
    Jorgensen, Sten Bay
    2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 4449 - 4450
  • [27] Mixtures of regressions with changepoints
    Derek S. Young
    Statistics and Computing, 2014, 24 : 265 - 281
  • [28] NOTE ON ESTIMATION OF THE AUTOCOVARIANCE FUNCTION IN THE ANALYSIS OF TIMING OF REPETITIVE RESPONSES
    WING, AM
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1979, 32 (MAY): : 143 - 145
  • [29] UNBIASED ESTIMATION OF THE AUTOCOVARIANCE FUNCTION IN A STATIONARY GENERALIZED LOGNORMAL PROCESS
    SHIMIZU, K
    IWASE, K
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1987, 16 (07) : 2145 - 2154
  • [30] Robust autocovariance estimation based on sign and rank correlation coefficients
    Möttönen, J
    Koivunen, V
    Oja, H
    PROCEEDINGS OF THE IEEE SIGNAL PROCESSING WORKSHOP ON HIGHER-ORDER STATISTICS, 1999, : 187 - 190