ESTIMATION OF AUTOCOVARIANCE MATRICES FOR INFINITE DIMENSIONAL VECTOR LINEAR PROCESS

被引:9
|
作者
Bhattacharjee, Monika [1 ]
Bose, Arup [1 ]
机构
[1] Indian Stat Inst, Stat & Math Unit, Kolkata 700108, India
关键词
marginal variance-covariance matrix; parameter matrix; coefficient matrix; High-dimensional data; operator norm; banding; spatial variable; k-th order autocovariance matrix; variance-covariance matrix; IVAR; cross-sectional variables; consistency; convergence rate; DYNAMIC-FACTOR MODEL;
D O I
10.1111/jtsa.12063
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider an infinite dimensional vector linear process. Under suitable assumptions on the parameter space, we provide consistent estimators of the autocovariance matrices. In particular, under causality, this includes the infinite-dimensional vector autoregressive (IVAR) process. In that case, we obtain consistent estimators for the parameter matrices. An explicit expression for the estimators is obtained for IVAR(1), under a fairly realistic parameter space. We also show that under some mild restrictions, the consistent estimator of the marginal large dimensional variance-covariance matrix has the same convergence rate as that in case of i.i.d. samples.
引用
收藏
页码:262 / 281
页数:20
相关论文
共 50 条
  • [1] Estimation of autocovariance matrices for high dimensional linear processes
    Konrad Furmańczyk
    Metrika, 2021, 84 : 595 - 613
  • [2] Estimation of autocovariance matrices for high dimensional linear processes
    Furmanczyk, Konrad
    METRIKA, 2021, 84 (04) : 595 - 613
  • [3] High-dimensional autocovariance matrices and optimal linear prediction
    McMurry, Timothy L.
    Politis, Dimitris N.
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (01): : 753 - 788
  • [4] Banded and tapered estimates for autocovariance matrices and the linear process bootstrap
    McMurry, Timothy L.
    Politis, Dimitris N.
    JOURNAL OF TIME SERIES ANALYSIS, 2010, 31 (06) : 471 - 482
  • [5] Discussion of "High-dimensional autocovariance matrices and optimal linear prediction"
    Wu, Wei Biao
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (01): : 789 - 791
  • [6] Estimation of inverse autocovariance matrices for long memory processes
    Ing, Ching-Kang
    Chiou, Hai-Tang
    Guo, Meihui
    BERNOULLI, 2016, 22 (03) : 1301 - 1330
  • [7] LARGE SAMPLE BEHAVIOUR OF HIGH DIMENSIONAL AUTOCOVARIANCE MATRICES
    Bhattacharjee, Monika
    Bose, Arup
    ANNALS OF STATISTICS, 2016, 44 (02): : 598 - 628
  • [8] ON LINEAR VECTOR OPTIMIZATION DUALITY IN INFINITE-DIMENSIONAL SPACES
    Bot, Radu Ioan
    Grad, Sorin-Mihai
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2011, 1 (03): : 407 - 415
  • [9] Measurement Difference Autocovariance Method for Noise Covariance Matrices Estimation
    Dunik, Jindrich
    Straka, Ondrej
    Kost, Oliver
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 365 - 370
  • [10] Large sample autocovariance matrices of linear processes with heavy tails
    Heiny, Johannes
    Mikosch, Thomas
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2021, 141 : 344 - 375