The sum of squares of degrees of bipartite graphs

被引:0
|
作者
M. G. Neubauer
机构
[1] California State University,Department of Mathematics
[2] Northridge,undefined
来源
Acta Mathematica Hungarica | 2023年 / 171卷
关键词
bipartite graph; sum of squares of degree sequences; primary 05C07; 05C35; 05C75; secondary 11P81;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a subgraph of the complete bipartite graph Kl,m,l≤m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{l,m},{l \leq m}$$\end{document}, with e=qm+p>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e=qm+p>0$$\end{document}, 0≤p<m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \leq p <m$$\end{document}, edges. The maximal value of the sum of the squares of the degrees of the vertices of G is qm2+p2+p(q+1)2+(m-p)q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$qm^2+p^2+ p (q+1)^2+(m-p) q^2$$\end{document}. We classify all graphs that attain this bound using the diagonal sequence of a partition.
引用
收藏
页码:1 / 11
页数:10
相关论文
共 50 条
  • [21] The sum of the squares of degrees: Sharp asymptotics
    Nikiforov, Vladimir
    DISCRETE MATHEMATICS, 2007, 307 (24) : 3187 - 3193
  • [22] Maximizing the sum of the squares of the degrees of a graph
    Das, KC
    DISCRETE MATHEMATICS, 2004, 285 (1-3) : 57 - 66
  • [23] The sum number and integral sum number of complete bipartite graphs
    Wang, Y
    Liu, BL
    DISCRETE MATHEMATICS, 2001, 239 (1-3) : 69 - 82
  • [24] Panconnectivity in Bipartite Graphs with Large Degree sum
    Masao Tsugaki
    Tomoki Yamashita
    Takamasa Yashima
    Graphs and Combinatorics, 2023, 39
  • [25] Degree Sum Conditions for Cyclability in Bipartite Graphs
    Okamura, Haruko
    Yamashita, Tomoki
    GRAPHS AND COMBINATORICS, 2013, 29 (04) : 1077 - 1085
  • [26] Degree Sum Conditions for Cyclability in Bipartite Graphs
    Haruko Okamura
    Tomoki Yamashita
    Graphs and Combinatorics, 2013, 29 : 1077 - 1085
  • [27] On the sum of powers of Laplacian eigenvalues of bipartite graphs
    Zhou, Bo
    Ilic, Aleksandar
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (04) : 1161 - 1169
  • [28] On the sum of powers of Laplacian eigenvalues of bipartite graphs
    Bo Zhou
    Aleksandar Ilić
    Czechoslovak Mathematical Journal, 2010, 60 : 1161 - 1169
  • [29] Sum Coloring of Bipartite Graphs with Bounded Degree
    Michal Malafiejski
    Krzysztof Giaro
    Robert Janczewski
    Marek Kubale
    Algorithmica , 2004, 40 : 235 - 244
  • [30] Sum coloring of bipartite graphs with bounded degree
    Malafiejski, M
    Giaro, K
    Janczewski, R
    Kubale, M
    ALGORITHMICA, 2004, 40 (04) : 235 - 244