The sum of squares of degrees of bipartite graphs

被引:0
|
作者
M. G. Neubauer
机构
[1] California State University,Department of Mathematics
[2] Northridge,undefined
来源
Acta Mathematica Hungarica | 2023年 / 171卷
关键词
bipartite graph; sum of squares of degree sequences; primary 05C07; 05C35; 05C75; secondary 11P81;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a subgraph of the complete bipartite graph Kl,m,l≤m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{l,m},{l \leq m}$$\end{document}, with e=qm+p>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e=qm+p>0$$\end{document}, 0≤p<m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \leq p <m$$\end{document}, edges. The maximal value of the sum of the squares of the degrees of the vertices of G is qm2+p2+p(q+1)2+(m-p)q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$qm^2+p^2+ p (q+1)^2+(m-p) q^2$$\end{document}. We classify all graphs that attain this bound using the diagonal sequence of a partition.
引用
收藏
页码:1 / 11
页数:10
相关论文
共 50 条