Panconnectivity in Bipartite Graphs with Large Degree sum

被引:0
|
作者
Masao Tsugaki
Tomoki Yamashita
Takamasa Yashima
机构
[1] Tokyo University of Science,Department of Applied Mathematics
[2] Kindai University,Department of Mathematics
[3] Seikei University,Department of Computer and Information Science
来源
Graphs and Combinatorics | 2023年 / 39卷
关键词
Bipartite graph; Degree sum condition; Panconnected; Vertex-pancyclic; 05C07; 05C38;
D O I
暂无
中图分类号
学科分类号
摘要
In 1995, Amar et al. introduced the concept of panconnectivity for balanced bipartite graphs, and obtained a degree sum condition. In 2018, Du et al. extended this concept to general bipartite graphs, and gave a minimum degree condition. In this paper, we generalize these results. In order to prove it, we obtain a result on vertex-bipancyclicity.
引用
收藏
相关论文
共 50 条
  • [1] Panconnectivity in Bipartite Graphs with Large Degree sum
    Tsugaki, Masao
    Yamashita, Tomoki
    Yashima, Takamasa
    GRAPHS AND COMBINATORICS, 2023, 39 (02)
  • [2] Spanning Bipartite Graphs with Large Degree Sum in Graphs of Odd Order
    Shuya Chiba
    Akira Saito
    Masao Tsugaki
    Tomoki Yamashita
    Graphs and Combinatorics, 2021, 37 : 1841 - 1858
  • [3] Spanning Bipartite Graphs with Large Degree Sum in Graphs of Odd Order
    Chiba, Shuya
    Saito, Akira
    Tsugaki, Masao
    Yamashita, Tomoki
    GRAPHS AND COMBINATORICS, 2021, 37 (05) : 1841 - 1858
  • [4] A panconnectivity theorem for bipartite graphs
    Du, Hui
    Faudree, Ralph J.
    Lehel, Jeno
    Yoshimoto, Kiyoshi
    DISCRETE MATHEMATICS, 2018, 341 (01) : 151 - 154
  • [5] Spanning bipartite graphs with high degree sum in graphs
    Chen, Guantao
    Chiba, Shuya
    Gould, Ronald J.
    Gu, Xiaofeng
    Saito, Akira
    Tsugaki, Masao
    Yamashita, Tomoki
    DISCRETE MATHEMATICS, 2020, 343 (02)
  • [6] Degree Sum Conditions for Cyclability in Bipartite Graphs
    Okamura, Haruko
    Yamashita, Tomoki
    GRAPHS AND COMBINATORICS, 2013, 29 (04) : 1077 - 1085
  • [7] Degree Sum Conditions for Cyclability in Bipartite Graphs
    Haruko Okamura
    Tomoki Yamashita
    Graphs and Combinatorics, 2013, 29 : 1077 - 1085
  • [8] Sum coloring of bipartite graphs with bounded degree
    Malafiejski, M
    Giaro, K
    Janczewski, R
    Kubale, M
    ALGORITHMICA, 2004, 40 (04) : 235 - 244
  • [9] Sum Coloring of Bipartite Graphs with Bounded Degree
    Michal Malafiejski
    Krzysztof Giaro
    Robert Janczewski
    Marek Kubale
    Algorithmica , 2004, 40 : 235 - 244
  • [10] Pancyclicity, Panconnectivity, and Panpositionability for General Graphs and Bipartite Graphs
    Kao, Shin-Shin
    Lin, Cheng-Kuan
    Huang, Hua-Min
    Hsu, Lih-Hsing
    ARS COMBINATORIA, 2012, 105 : 231 - 246