On noncommutative Gröbner bases over rings

被引:0
|
作者
Golod E.S. [1 ]
机构
[1] Moscow State University,
关键词
Polynomial Ring; Homology Class; Monomial Ideal; Initial Term; Valuation Domain;
D O I
10.1007/s10958-007-0420-y
中图分类号
学科分类号
摘要
Let R be a commutative ring. It is proved that for verification of whether a set of elements {f α} of the free associative algebra over R is a Gröbner basis (with respect to some admissible monomial order) of the (bilateral) ideal that the elements f α generate it is sufficient to check the reducibility to zero of S-polynomials with respect to {f α} iff R is an arithmetical ring. Some related open questions and examples are also discussed. © 2007 Springer Science+Business Media, Inc.
引用
收藏
页码:239 / 242
页数:3
相关论文
共 50 条
  • [31] On the Relation Between Gröbner and Pommaret Bases
    Daniel Mall
    Applicable Algebra in Engineering, Communication and Computing, 1998, 9 : 117 - 123
  • [32] Slimgb: Gröbner bases with slim polynomials
    Michael Brickenstein
    Revista Matemática Complutense, 2010, 23 : 453 - 466
  • [33] Gröbner bases and combinatorics for binary codes
    M. Borges-Quintana
    M. A. Borges-Trenard
    P. Fitzpatrick
    E. Martínez-Moro
    Applicable Algebra in Engineering, Communication and Computing, 2008, 19 : 393 - 411
  • [34] The λ-Gröbner Bases Under Polynomial Composition
    Jinwang Liu
    Dongmei Li
    Xiaosong Chen
    Journal of Systems Science and Complexity, 2007, 20 : 610 - 613
  • [35] Gröbner bases for bipartite determinantal ideals
    Illian, Josua
    Li, Li
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (01) : 124 - 147
  • [36] Gröbner bases for complete uniform families
    Hegedűs, Gábor
    Rónyai, Lajos
    Journal of Algebraic Combinatorics, 2003, 17 (02): : 171 - 180
  • [37] Gröbner Bases for Complete Uniform Families
    Gábor Hegedűs
    Lajos Rónyai
    Journal of Algebraic Combinatorics, 2003, 17 : 171 - 180
  • [38] On Noncommutative Bases of Free Modules of Derivations over Polynomial Rings
    Makedonskyi, Ievgen
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (01) : 11 - 25
  • [39] A Gr?bner Basis Algorithm for Ideals over Zero-Dimensional Valuation Rings
    LI Dongmei
    LIU Jinwang
    Journal of Systems Science & Complexity, 2021, 34 (06) : 2470 - 2483
  • [40] A Gröbner Basis Algorithm for Ideals over Zero-Dimensional Valuation Rings
    Dongmei Li
    Jinwang Liu
    Journal of Systems Science and Complexity, 2021, 34 : 2470 - 2483