Gröbner bases for complete uniform families

被引:0
|
作者
Hegedűs, Gábor [1 ]
Rónyai, Lajos [1 ]
机构
[1] Computer and Automation Institute, Hungarian Academy of Sciences, Budapest Univ. of Technol. and Eco., Budapest, Hungary
来源
Journal of Algebraic Combinatorics | 2003年 / 17卷 / 02期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We describe (reduced) Gröbner bases of the ideal of polynomials over a field, which vanish on the set of characteristic vectors of the complete uniform families (d[n]). An interesting feature of the results is that they are largely independent of the monomial order selected. The bases depend only on the ordering of the variables. We can thus use past results related to the lex order in the presence of degree-compatible orders, such as deglex. As applications, we give simple proofs of some known results on incidence matrices.
引用
收藏
页码:171 / 180
相关论文
共 50 条
  • [1] Gröbner Bases for Complete Uniform Families
    Gábor Hegedűs
    Lajos Rónyai
    Journal of Algebraic Combinatorics, 2003, 17 : 171 - 180
  • [2] A note on Gröbner bases
    Carvalho P.
    Journal of Mathematical Sciences, 2009, 161 (6) : 832 - 838
  • [3] On Computing Uniform Gr?bner Bases for Ideals Generated by Polynimials with Parametric Exponents
    LIU Lanlan
    ZHOU Meng
    Journal of Systems Science & Complexity, 2016, 29 (03) : 850 - 864
  • [4] On computing uniform Gröbner bases for ideals generated by polynimials with parametric exponents
    Lanlan Liu
    Meng Zhou
    Journal of Systems Science and Complexity, 2016, 29 : 850 - 864
  • [5] Grobner bases for complete uniform families
    Hegedus, G
    Rónyai, L
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2003, 17 (02) : 171 - 180
  • [6] Gr δbner Bases with Reduction Machines
    Surlea, Georgiana
    Craciun, Adrian
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2019, (303): : 61 - 75
  • [7] Gröbner bases of contraction ideals
    Takafumi Shibuta
    Journal of Algebraic Combinatorics, 2012, 36 : 1 - 19
  • [8] A combinatorial complexity of gröbner bases
    Latyshev V.N.
    Journal of Mathematical Sciences, 2000, 102 (3) : 4134 - 4138
  • [9] Tropical Differential Gröbner Bases
    Youren Hu
    Xiao-Shan Gao
    Mathematics in Computer Science, 2021, 15 : 255 - 269
  • [10] Gröbner Bases for Fusion Products
    Johannes Flake
    Ghislain Fourier
    Viktor Levandovskyy
    Algebras and Representation Theory, 2023, 26 : 2235 - 2253