Gröbner bases for complete uniform families

被引:0
|
作者
Hegedűs, Gábor [1 ]
Rónyai, Lajos [1 ]
机构
[1] Computer and Automation Institute, Hungarian Academy of Sciences, Budapest Univ. of Technol. and Eco., Budapest, Hungary
来源
Journal of Algebraic Combinatorics | 2003年 / 17卷 / 02期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We describe (reduced) Gröbner bases of the ideal of polynomials over a field, which vanish on the set of characteristic vectors of the complete uniform families (d[n]). An interesting feature of the results is that they are largely independent of the monomial order selected. The bases depend only on the ordering of the variables. We can thus use past results related to the lex order in the presence of degree-compatible orders, such as deglex. As applications, we give simple proofs of some known results on incidence matrices.
引用
收藏
页码:171 / 180
相关论文
共 50 条
  • [31] On the Modular Computation of Gröbner Bases with Integer Coefficients
    Orevkov S.Y.
    Journal of Mathematical Sciences, 2014, 200 (6) : 722 - 724
  • [32] On the computation of parametric Gröbner bases for modules and syzygies
    Katsusuke Nabeshima
    Japan Journal of Industrial and Applied Mathematics, 2010, 27 : 217 - 238
  • [33] Gröbner Bases of Toric Ideals Associated with Matroids
    Ken-ichi Hayase
    Takayuki Hibi
    Koyo Katsuno
    Kazuki Shibata
    Acta Mathematica Vietnamica, 2022, 47 : 775 - 779
  • [34] Feynman integral reduction using Gröbner bases
    Mohamed Barakat
    Robin Brüser
    Claus Fieker
    Tobias Huber
    Jan Piclum
    Journal of High Energy Physics, 2023
  • [35] Minimal Primary Decomposition and Factorized Gröbner Bases
    Hans-Gert Gräbe
    Applicable Algebra in Engineering, Communication and Computing, 1997, 8 : 265 - 278
  • [36] On computing Gröbner bases in rings of differential operators
    XiaoDong Ma
    Yao Sun
    DingKang Wang
    Science China Mathematics, 2011, 54 : 1077 - 1087
  • [37] Gröbner–Shirshov bases for some Lie algebras
    Yu. Chen
    Y. Li
    Q. Tang
    Siberian Mathematical Journal, 2017, 58 : 176 - 182
  • [38] Gröbner Bases for Problem Solving in Multidimensional Systems
    C. Charoenlarpnopparut
    N.K. Bose
    Multidimensional Systems and Signal Processing, 2001, 12 : 365 - 376
  • [39] Gröbner–Shirshov Bases: From their Incipiency to the Present
    L. A. Bokut'
    P. S. Kolesnikov
    Journal of Mathematical Sciences, 2003, 116 (1) : 2894 - 2916
  • [40] Characteristic Modules of Dual Extensions and Grbner Bases
    Yun Ge XU
    Long Cai LI
    ActaMathematicaSinica(EnglishSeries), 2004, 20 (06) : 1119 - 1130