On noncommutative Gröbner bases over rings

被引:0
|
作者
Golod E.S. [1 ]
机构
[1] Moscow State University,
关键词
Polynomial Ring; Homology Class; Monomial Ideal; Initial Term; Valuation Domain;
D O I
10.1007/s10958-007-0420-y
中图分类号
学科分类号
摘要
Let R be a commutative ring. It is proved that for verification of whether a set of elements {f α} of the free associative algebra over R is a Gröbner basis (with respect to some admissible monomial order) of the (bilateral) ideal that the elements f α generate it is sufficient to check the reducibility to zero of S-polynomials with respect to {f α} iff R is an arithmetical ring. Some related open questions and examples are also discussed. © 2007 Springer Science+Business Media, Inc.
引用
收藏
页码:239 / 242
页数:3
相关论文
共 50 条
  • [41] SOME STUDIES ON GRBNER BASES FOR MODULES AND APPLICATIONS
    WANG Mingsheng(State Key Lab of Information Security. Institute of Software
    Journal of Systems Science & Complexity, 2002, (04) : 396 - 406
  • [42] A Hybrid Gröbner bases approach to computing power integral bases
    L. Robertson
    R. Russell
    Acta Mathematica Hungarica, 2015, 147 : 427 - 437
  • [43] Efficiency estimate for distributed computation of Gröbner bases and involutive bases
    D. A. Yanovich
    Programming and Computer Software, 2008, 34 : 210 - 215
  • [44] On the Decoding of Cyclic Codes Using Gröbner Bases
    Philippe Loustaunau
    Eric V. York
    Applicable Algebra in Engineering, Communication and Computing, 1997, 8 : 469 - 483
  • [45] Feynman integral reduction using Gröbner bases
    Mohamed Barakat
    Robin Brüser
    Claus Fieker
    Tobias Huber
    Jan Piclum
    Journal of High Energy Physics, 2023
  • [46] Minimal Primary Decomposition and Factorized Gröbner Bases
    Hans-Gert Gräbe
    Applicable Algebra in Engineering, Communication and Computing, 1997, 8 : 265 - 278
  • [47] Gröbner Bases of Toric Ideals Associated with Matroids
    Ken-ichi Hayase
    Takayuki Hibi
    Koyo Katsuno
    Kazuki Shibata
    Acta Mathematica Vietnamica, 2022, 47 : 775 - 779
  • [48] Sagbi-Gröbner Bases Under Composition
    Nazish Kanwal
    Junaid Alam Khan
    Journal of Systems Science and Complexity, 2023, 36 : 2214 - 2224
  • [49] On the Modular Computation of Gröbner Bases with Integer Coefficients
    Orevkov S.Y.
    Journal of Mathematical Sciences, 2014, 200 (6) : 722 - 724
  • [50] On the computation of parametric Gröbner bases for modules and syzygies
    Katsusuke Nabeshima
    Japan Journal of Industrial and Applied Mathematics, 2010, 27 : 217 - 238