Oscillation results for certain forced fractional difference equations with damping term

被引:0
|
作者
Wei Nian Li
机构
[1] Binzhou University,Department of Mathematics
关键词
oscillation; forced fractional difference equation; damping term; 26A33; 39A12; 39A21;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish two sufficient conditions for the oscillation of forced fractional difference equations with damping term of the form (1+p(t))Δ(Δαx(t))+p(t)Δαx(t)+f(t,x(t))=g(t),t∈N0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl(1+p(t)\bigr)\Delta\bigl(\Delta^{\alpha}x(t)\bigr)+p(t) \Delta^{\alpha}x(t)+f\bigl(t,x(t)\bigr)=g(t),\quad t\in\mathbb{N}_{0}, $$\end{document} with initial condition Δα−1x(t)|t=0=x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta^{\alpha-1}x(t)|_{t=0}=x_{0}$\end{document}, where 0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\alpha<1 $\end{document} is a constant, Δαx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta^{\alpha}x$\end{document} is the Riemann-Liouville fractional difference operator of order α of x, and N0={0,1,2,…}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{N}_{0}=\{0,1,2,\ldots\}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Oscillation Criteria for Certain Nonlinear Differential Equations with Damping
    Zheng, Zhaowen
    Zhu, Siming
    KYUNGPOOK MATHEMATICAL JOURNAL, 2006, 46 (02): : 219 - 229
  • [42] The Asymptotic Behavior of Solutions for a Class of Nonlinear Fractional Difference Equations with Damping Term
    Bai, Zhihong
    Xu, Run
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2018, 2018
  • [43] Oscillation theorems for nonlinear fractional difference equations
    Adiguzel, Hakan
    BOUNDARY VALUE PROBLEMS, 2018,
  • [44] On the oscillation of q-fractional difference equations
    Abdalla, Bahaaeldin
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [45] OSCILLATION PROPERTIES OF SOLUTIONS OF FRACTIONAL DIFFERENCE EQUATIONS
    Bayram, Mustafa
    Secer, Aydin
    THERMAL SCIENCE, 2019, 23 (S185-S192): : S185 - S192
  • [46] A Survey on the Oscillation of Solutions for Fractional Difference Equations
    Alzabut, Jehad
    Agarwal, Ravi P.
    Grace, Said R.
    Jonnalagadda, Jagan M.
    Selvam, A. George Maria
    Wang, Chao
    MATHEMATICS, 2022, 10 (06)
  • [47] Some New Oscillation Criteria for a Class of Nonlinear Fractional Differential Equations with Damping Term
    Zheng, Bin
    Feng, Qinghua
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [48] On the oscillation of q-fractional difference equations
    Bahaaeldin Abdalla
    Advances in Difference Equations, 2017
  • [49] Oscillation theorems for nonlinear fractional difference equations
    Hakan Adiguzel
    Boundary Value Problems, 2018
  • [50] OSCILLATION OF SOLUTIONS TO NONLINEAR FORCED FRACTIONAL DIFFERENTIAL EQUATIONS
    Feng, Qinghua
    Meng, Fanwei
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,