Oscillation results for certain forced fractional difference equations with damping term

被引:0
|
作者
Wei Nian Li
机构
[1] Binzhou University,Department of Mathematics
关键词
oscillation; forced fractional difference equation; damping term; 26A33; 39A12; 39A21;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish two sufficient conditions for the oscillation of forced fractional difference equations with damping term of the form (1+p(t))Δ(Δαx(t))+p(t)Δαx(t)+f(t,x(t))=g(t),t∈N0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl(1+p(t)\bigr)\Delta\bigl(\Delta^{\alpha}x(t)\bigr)+p(t) \Delta^{\alpha}x(t)+f\bigl(t,x(t)\bigr)=g(t),\quad t\in\mathbb{N}_{0}, $$\end{document} with initial condition Δα−1x(t)|t=0=x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta^{\alpha-1}x(t)|_{t=0}=x_{0}$\end{document}, where 0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\alpha<1 $\end{document} is a constant, Δαx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta^{\alpha}x$\end{document} is the Riemann-Liouville fractional difference operator of order α of x, and N0={0,1,2,…}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{N}_{0}=\{0,1,2,\ldots\}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [11] NEW RESULTS FOR OSCILLATION OF FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS WITH DAMPING TERM
    Luo, Liping
    Luo, Zhenguo
    Zeng, Yunhui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (09): : 3223 - 3231
  • [12] Forced Oscillation of a Certain System of Fractional Partial Differential Equations
    Ramesh, R.
    Prakash, P.
    Harikrishnan, S.
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2021, 10 (04) : 607 - 615
  • [13] New Oscillation Criteria for Forced Nonlinear Fractional Difference Equations
    Abdalla B.
    Abodayeh K.
    Abdeljawad T.
    Alzabut J.
    Vietnam Journal of Mathematics, 2017, 45 (4) : 609 - 618
  • [14] Oscillation of a Class of Fractional Differential Equations with Damping Term
    Qin, Huizeng
    Zheng, Bin
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [15] On the Oscillation of Non-Linear Fractional Difference Equations with Damping
    Alzabut, Jehad
    Muthulakshmi, Velu
    Ozbekler, Abdullah
    Adigilzel, Hakan
    MATHEMATICS, 2019, 7 (08)
  • [16] A certain class of fractional difference equations with damping: Oscillatory properties
    Arundhathi, Sivakumar
    Alzabut, Jehad
    Muthulakshmi, Velu
    Adiguezel, Hakan
    DEMONSTRATIO MATHEMATICA, 2023, 56 (01)
  • [17] Oscillation Theorems for Certain Forced Nonlinear Discrete Fractional Order Equations
    Chatzarakis, George E.
    Selvam, A. George Maria
    Janagaraj, R.
    Douka, Maria
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (04): : 763 - 772
  • [18] Oscillation Theorems for a Class of Forced Non-Linear Discrete Equations of Fractional Order with Damping Term
    Selvam, A. George Maria
    Jacintha, Mary
    Janagaraj, R.
    INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (ICMSA-2019), 2020, 2246
  • [19] Oscillation analysis of a forced fractional order sum-difference equations
    Alzabut, Jehad
    Selvam, A. George Maria
    Janagaraj, R.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 1600, 0 (01): : 0375-9237 - 2357-0350
  • [20] Oscillation analysis of a forced fractional order sum-difference equations
    Alzabut, Jehad
    Selvam, A. George Maria
    Janagaraj, R.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2025, 37 (02): : 214 - 225