Oscillation results for certain forced fractional difference equations with damping term

被引:0
|
作者
Wei Nian Li
机构
[1] Binzhou University,Department of Mathematics
关键词
oscillation; forced fractional difference equation; damping term; 26A33; 39A12; 39A21;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish two sufficient conditions for the oscillation of forced fractional difference equations with damping term of the form (1+p(t))Δ(Δαx(t))+p(t)Δαx(t)+f(t,x(t))=g(t),t∈N0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl(1+p(t)\bigr)\Delta\bigl(\Delta^{\alpha}x(t)\bigr)+p(t) \Delta^{\alpha}x(t)+f\bigl(t,x(t)\bigr)=g(t),\quad t\in\mathbb{N}_{0}, $$\end{document} with initial condition Δα−1x(t)|t=0=x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta^{\alpha-1}x(t)|_{t=0}=x_{0}$\end{document}, where 0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\alpha<1 $\end{document} is a constant, Δαx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta^{\alpha}x$\end{document} is the Riemann-Liouville fractional difference operator of order α of x, and N0={0,1,2,…}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{N}_{0}=\{0,1,2,\ldots\}$\end{document}.
引用
收藏
相关论文
共 50 条