Oscillation results for certain forced fractional difference equations with damping term

被引:0
|
作者
Wei Nian Li
机构
[1] Binzhou University,Department of Mathematics
关键词
oscillation; forced fractional difference equation; damping term; 26A33; 39A12; 39A21;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish two sufficient conditions for the oscillation of forced fractional difference equations with damping term of the form (1+p(t))Δ(Δαx(t))+p(t)Δαx(t)+f(t,x(t))=g(t),t∈N0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bigl(1+p(t)\bigr)\Delta\bigl(\Delta^{\alpha}x(t)\bigr)+p(t) \Delta^{\alpha}x(t)+f\bigl(t,x(t)\bigr)=g(t),\quad t\in\mathbb{N}_{0}, $$\end{document} with initial condition Δα−1x(t)|t=0=x0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta^{\alpha-1}x(t)|_{t=0}=x_{0}$\end{document}, where 0<α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\alpha<1 $\end{document} is a constant, Δαx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Delta^{\alpha}x$\end{document} is the Riemann-Liouville fractional difference operator of order α of x, and N0={0,1,2,…}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{N}_{0}=\{0,1,2,\ldots\}$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Oscillation results for certain forced fractional difference equations with damping term
    Li, Wei Nian
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [2] Oscillation Results for a Class of Nonlinear Fractional Order Difference Equations with Damping Term
    Selvam, A. George Maria
    Alzabut, Jehad
    Jacintha, Mary
    Ozbekler, Abdullah
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [3] Forced oscillation of nonlinear fractional differential equations with damping term
    Yang, Jichen
    Liu, Anping
    Liu, Ting
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [4] Forced Oscillation of Nonlinear Fractional Delay Differential Equations with Damping Term
    Zhu, Si-ying
    Li, Hui-juan
    Liu, An-ping
    2018 2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELING AND SIMULATION (AMMS 2018), 2018, 305 : 43 - 51
  • [5] Forced oscillation of certain fractional differential equations
    Chen, Da-Xue
    Qu, Pei-Xin
    Lan, Yong-Hong
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [6] Forced oscillation of certain fractional differential equations
    Da-Xue Chen
    Pei-Xin Qu
    Yong-Hong Lan
    Advances in Difference Equations, 2013
  • [7] Forced oscillation of fractional differential equations via conformable derivatives with damping term
    Aphirak Aphithana
    Sotiris K. Ntouyas
    Jessada Tariboon
    Boundary Value Problems, 2019
  • [8] Forced Oscillation Criteria for a Class of Fractional Partial Differential Equations with Damping Term
    Li, Wei Nian
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [9] Forced oscillation of fractional differential equations via conformable derivatives with damping term
    Aphithana, Aphirak
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
  • [10] On the forced oscillation of certain fractional partial differential equations
    Li, Wei Nian
    APPLIED MATHEMATICS LETTERS, 2015, 50 : 5 - 9