Deontic Logic for Strategic Games

被引:0
|
作者
Allard Tamminga
机构
[1] University of Groningen,Faculty of Philosophy
来源
Erkenntnis | 2013年 / 78卷
关键词
Nash Equilibrium; Preference Relation; Moral Theory; Grand Coalition; Atomic Proposition;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a multi-agent deontic action logic to study the logical behaviour of two types of deontic conditionals: (1) conditional obligations, having the form “If group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document} were to perform action \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha_{\mathcal{H}}$$\end{document}, then, in group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}\hbox{'s}$$\end{document} interest, group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{G}}$$\end{document} ought to perform action \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha_{\mathcal{G}}$$\end{document}” and (2) conditional permissions, having the form “If group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document} were to perform action \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha_{\mathcal{H}}}$$\end{document}, then, in group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}\hbox{'s}$$\end{document} interest, group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{G}}$$\end{document} may perform action \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha_{\mathcal{G}}$$\end{document}”. First, we define a formal language for multi-agent deontic action logic and a class of consequentialist models to interpret the formulas of the language. Second, we define a transformation that converts any strategic game into a consequentialist model. Third, we show that an outcome \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ a^{\ast} $$\end{document} is a Nash equilibrium of a strategic game if and only if a conjunction of certain conditional permissions is true in the consequentialist model that results from the transformation of that strategic game.
引用
收藏
页码:183 / 200
页数:17
相关论文
共 50 条
  • [41] Moderately naturalistic deontic logic
    Hage, J
    NORMS, LOGICS AND INFORMATION SYSTEMS: NEW STUDIES IN DEONTIC LOGIC AND COMPUTER SCIENCE, 1999, 49 : 55 - 72
  • [42] Investigations into the application of deontic logic
    denHaan, N
    EXECUTABLE MODAL AND TEMPORAL LOGICS, 1995, 897 : 157 - 178
  • [43] Action Type Deontic Logic
    Bentzen, Martin Mose
    JOURNAL OF LOGIC LANGUAGE AND INFORMATION, 2014, 23 (04) : 397 - 414
  • [44] Reactive standard deontic logic
    Gabbay, Dov M.
    Strasser, Christian
    JOURNAL OF LOGIC AND COMPUTATION, 2015, 25 (01) : 117 - 157
  • [45] Generalizing Deontic Action Logic
    Giordani, Alessandro
    Pascucci, Matteo
    STUDIA LOGICA, 2022, 110 (04) : 989 - 1033
  • [46] Deontic logic for human reasoning
    Furbach, Ulrich
    Schon, Claudia
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015, 9060 : 63 - 80
  • [47] Moral Particularism and Deontic Logic
    Parent, Xavier
    DEONTIC LOGIC IN COMPUTER SCIENCE, 2010, 6181 : 84 - 97
  • [48] Basic logic deontic and filters
    Feitosa, Hercules de Araujo
    Soares, Marcelo Reicher
    Lazaro, Cristiane Alexandra
    ARGUMENTOS-REVISTA DE FILOSOFIA, 2019, (22): : 7 - 16
  • [49] A REDUCTION OF DEONTIC LOGIC TO ALETHIC MODAL LOGIC
    ANDERSON, AR
    MIND, 1958, 67 (265) : 100 - 103
  • [50] Priority Structures in Deontic Logic
    Van Benthem, Johan
    Grossi, Davide
    Liu, Fenrong
    THEORIA-A SWEDISH JOURNAL OF PHILOSOPHY, 2014, 80 (02): : 116 - 152