Deontic Logic for Strategic Games

被引:0
|
作者
Allard Tamminga
机构
[1] University of Groningen,Faculty of Philosophy
来源
Erkenntnis | 2013年 / 78卷
关键词
Nash Equilibrium; Preference Relation; Moral Theory; Grand Coalition; Atomic Proposition;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a multi-agent deontic action logic to study the logical behaviour of two types of deontic conditionals: (1) conditional obligations, having the form “If group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document} were to perform action \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha_{\mathcal{H}}$$\end{document}, then, in group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}\hbox{'s}$$\end{document} interest, group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{G}}$$\end{document} ought to perform action \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha_{\mathcal{G}}$$\end{document}” and (2) conditional permissions, having the form “If group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document} were to perform action \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha_{\mathcal{H}}}$$\end{document}, then, in group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}\hbox{'s}$$\end{document} interest, group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{G}}$$\end{document} may perform action \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha_{\mathcal{G}}$$\end{document}”. First, we define a formal language for multi-agent deontic action logic and a class of consequentialist models to interpret the formulas of the language. Second, we define a transformation that converts any strategic game into a consequentialist model. Third, we show that an outcome \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ a^{\ast} $$\end{document} is a Nash equilibrium of a strategic game if and only if a conjunction of certain conditional permissions is true in the consequentialist model that results from the transformation of that strategic game.
引用
收藏
页码:183 / 200
页数:17
相关论文
共 50 条
  • [31] DEONTIC LOGIC BASED ON A LOGIC OF BETTER
    DAWSON, EE
    JOURNAL OF SYMBOLIC LOGIC, 1966, 31 (02) : 278 - +
  • [32] Choice logic programs and Nash equilibria in strategic games
    De Vos, M
    Vermeir, D
    COMPUTER SCIENCE LOGIC, PROCEEDINGS, 1999, 1683 : 266 - 276
  • [33] Deontic logic - as I see it
    von Wright, GH
    NORMS, LOGICS AND INFORMATION SYSTEMS: NEW STUDIES IN DEONTIC LOGIC AND COMPUTER SCIENCE, 1999, 49 : 15 - 25
  • [34] NEGATION AND LOGIC OF DEONTIC ASSERTIONS
    HOLMES, RL
    INQUIRY-AN INTERDISCIPLINARY JOURNAL OF PHILOSOPHY, 1967, 10 (1-2): : 89 - 95
  • [35] Deontic Logic and Legal Systems
    Nunez, Jorge Emilio
    JURISPRUDENCE-AN INTERNATIONAL JOURNAL OF LEGAL AND POLITICAL THOUGHT, 2016, 7 (03): : 627 - 635
  • [36] THE CENTRAL PRINCIPLE OF DEONTIC LOGIC
    SCHLESINGER, GN
    PHILOSOPHY AND PHENOMENOLOGICAL RESEARCH, 1985, 45 (04) : 515 - 535
  • [37] Δ-TIL and Problems of Deontic Logic
    Svoboda, Vladimir
    ORGANON F, 2016, 23 (04) : 539 - 550
  • [38] A Temporal Epistemic Deontic Logic
    Freund, Max A.
    NOTRE DAME JOURNAL OF FORMAL LOGIC, 2024, 65 (03) : 229 - 246
  • [39] A temporal dynamic deontic logic
    Ju, Fengkui
    van Eijck, Jan
    JOURNAL OF LOGIC AND COMPUTATION, 2019, 29 (02) : 265 - 284
  • [40] Toward a legal deontic logic
    Pospesel, H
    NOTRE DAME LAW REVIEW, 1998, 73 (03) : 603 - 626