Deontic Logic for Strategic Games

被引:0
|
作者
Allard Tamminga
机构
[1] University of Groningen,Faculty of Philosophy
来源
Erkenntnis | 2013年 / 78卷
关键词
Nash Equilibrium; Preference Relation; Moral Theory; Grand Coalition; Atomic Proposition;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a multi-agent deontic action logic to study the logical behaviour of two types of deontic conditionals: (1) conditional obligations, having the form “If group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document} were to perform action \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha_{\mathcal{H}}$$\end{document}, then, in group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}\hbox{'s}$$\end{document} interest, group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{G}}$$\end{document} ought to perform action \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha_{\mathcal{G}}$$\end{document}” and (2) conditional permissions, having the form “If group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document} were to perform action \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha_{\mathcal{H}}}$$\end{document}, then, in group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}\hbox{'s}$$\end{document} interest, group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{G}}$$\end{document} may perform action \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha_{\mathcal{G}}$$\end{document}”. First, we define a formal language for multi-agent deontic action logic and a class of consequentialist models to interpret the formulas of the language. Second, we define a transformation that converts any strategic game into a consequentialist model. Third, we show that an outcome \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ a^{\ast} $$\end{document} is a Nash equilibrium of a strategic game if and only if a conjunction of certain conditional permissions is true in the consequentialist model that results from the transformation of that strategic game.
引用
收藏
页码:183 / 200
页数:17
相关论文
共 50 条
  • [21] An overview of deontic logic
    Gomes, Nelson Goncalves
    KRITERION, 2008, 49 (117): : 9 - 38
  • [22] Contextual deontic logic
    van der Torre, LWN
    Tan, YH
    FORMAL MODELS OF AGENTS, 1999, 1760 : 240 - 251
  • [23] INTERPRETATIONS OF DEONTIC LOGIC
    AQVIST, L
    MIND, 1964, 73 (290) : 246 - 253
  • [24] Situationist Deontic Logic
    Sven Ove Hansson
    Journal of Philosophical Logic, 1997, 26 : 423 - 448
  • [25] UTILITARIAN DEONTIC LOGIC
    GOBLE, L
    PHILOSOPHICAL STUDIES, 1996, 82 (03) : 317 - 357
  • [26] Situationist deontic logic
    Hansson, SO
    JOURNAL OF PHILOSOPHICAL LOGIC, 1997, 26 (04) : 423 - 448
  • [27] A Kelsenian Deontic Logic
    Ciabattoni, Agata
    Parent, Xavier
    Sartor, Giovanni
    LEGAL KNOWLEDGE AND INFORMATION SYSTEMS, 2021, 346 : 141 - 150
  • [28] A Probabilistic Deontic Logic
    de Wit, Vincent
    Doder, Dragan
    Meyer, John Jules
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, ECSQARU 2021, 2021, 12897 : 616 - 628
  • [29] RELEVANT DEONTIC LOGIC
    STELZNER, W
    JOURNAL OF PHILOSOPHICAL LOGIC, 1992, 21 (02) : 193 - 216
  • [30] Introducing Exclusion Logic as a Deontic Logic
    Evans, Richard
    DEONTIC LOGIC IN COMPUTER SCIENCE, 2010, 6181 : 179 - 195