Signal mixture estimation for degenerate heavy Higgses using a deep neural network

被引:0
|
作者
Anders Kvellestad
Steffen Maeland
Inga Strümke
机构
[1] University of Oslo,Department of Physics
[2] Imperial College London,Blackett Laboratory, Department of Physics
[3] University of Bergen,Department of Physics and Technology
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
If a new signal is established in future LHC data, a next question will be to determine the signal composition, in particular whether the signal is due to multiple near-degenerate states. We investigate the performance of a deep learning approach to signal mixture estimation for the challenging scenario of a ditau signal coming from a pair of degenerate Higgs bosons of opposite CP charge. This constitutes a parameter estimation problem for a mixture model with highly overlapping features. We use an unbinned maximum likelihood fit to a neural network output, and compare the results to mixture estimation via a fit to a single kinematic variable. For our benchmark scenarios we find a ∼20%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim 20\%$$\end{document} improvement in the estimate uncertainty.
引用
收藏
相关论文
共 50 条
  • [1] Signal mixture estimation for degenerate heavy Higgses using a deep neural network
    Kvellestad, Anders
    Maeland, Steffen
    Strumke, Inga
    EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (12):
  • [2] Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil
    Pyo, JongCheol
    Hong, Seok Min
    Kwon, Yong Sung
    Kim, Moon Sung
    Cho, Kyung Hwa
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 741
  • [3] LFM Signal Detection and Estimation Based on Deep Convolutional Neural Network
    Chen, Xiaolong
    Jiang, Qiaowen
    Su, Ningyuan
    Chen, Baoxin
    Guan, Jian
    2019 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2019, : 753 - 758
  • [4] Tomato Maturity Estimation Using Deep Neural Network
    Kim, Taehyeong
    Lee, Dae-Hyun
    Kim, Kyoung-Chul
    Choi, Taeyong
    Yu, Jun Myoung
    APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [5] BENN: Bias Estimation Using a Deep Neural Network
    Giloni, Amit
    Grolman, Edita
    Hagemann, Tanja
    Fromm, Ronald
    Fischer, Sebastian
    Elovici, Yuval
    Shabtai, Asaf
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (01) : 117 - 131
  • [6] Detection and parameter estimation of frequency hopping signal based on the deep neural network
    Wang, Yuyang
    He, Shiru
    Wang, Changrong
    Li, Zhi
    Li, Jian
    Dai, Huajian
    Xie, Jianlan
    INTERNATIONAL JOURNAL OF ELECTRONICS, 2022, 109 (03) : 520 - 536
  • [7] Joint Torque Estimation Using sEMG and Deep Neural Network
    Harin Kim
    Hyeonjun Park
    Sangheum Lee
    Donghan Kim
    Journal of Electrical Engineering & Technology, 2020, 15 : 2287 - 2298
  • [8] Parameter Estimation for Dynamical Systems Using a Deep Neural Network
    Dufera, Tamirat Temesgen
    Seboka, Yadeta Chimdessa
    Fresneda Portillo, Carlos
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2022, 2022
  • [9] BLIND ESTIMATION OF REVERBERATION TIME USING DEEP NEURAL NETWORK
    Lee, Myungin
    Chang, Joon-Hyuk
    PROCEEDINGS OF 2016 5TH IEEE INTERNATIONAL CONFERENCE ON NETWORK INFRASTRUCTURE AND DIGITAL CONTENT (IEEE IC-NIDC 2016), 2016, : 308 - 311
  • [10] Joint Torque Estimation Using sEMG and Deep Neural Network
    Kim, Harin
    Park, Hyeonjun
    Lee, Sangheum
    Kim, Donghan
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2020, 15 (05) : 2287 - 2298