共 50 条
Upper bounds of Schubert polynomials
被引:0
|作者:
Neil Jiuyu Fan
Peter Long Guo
机构:
[1] Sichuan University,Department of Mathematics
[2] Nankai University,Center for Combinatorics, LPMC
来源:
关键词:
Schubert polynomial;
key polynomial;
flagged Weyl module;
upper bound;
Lorentzian polynomial;
05E05;
14N15;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let w be a permutation of {1, 2, …, n}, and let D(w) be the Rothe diagram of w. The Schubert polynomial Sw(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathfrak{S}_w}\left(x \right)$\end{document} can be realized as the dual character of the flagged Weyl module associated with D(w). This implies the following coefficient-wise inequality:
Minw(x)≤Sw(x)≤Maxw(x),\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\rm{Mi}}{{\rm{n}}_w}\left(x \right) \le {\mathfrak{S}_w}\left(x \right) \le {\rm{Ma}}{{\rm{x}}_w}\left(x \right),$$\end{document}
引用
收藏
页码:1319 / 1330
页数:11
相关论文