Upper bounds of Schubert polynomials

被引:0
|
作者
Neil Jiuyu Fan
Peter Long Guo
机构
[1] Sichuan University,Department of Mathematics
[2] Nankai University,Center for Combinatorics, LPMC
来源
Science China Mathematics | 2022年 / 65卷
关键词
Schubert polynomial; key polynomial; flagged Weyl module; upper bound; Lorentzian polynomial; 05E05; 14N15;
D O I
暂无
中图分类号
学科分类号
摘要
Let w be a permutation of {1, 2, …, n}, and let D(w) be the Rothe diagram of w. The Schubert polynomial Sw(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathfrak{S}_w}\left(x \right)$\end{document} can be realized as the dual character of the flagged Weyl module associated with D(w). This implies the following coefficient-wise inequality: Minw(x)≤Sw(x)≤Maxw(x),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm{Mi}}{{\rm{n}}_w}\left(x \right) \le {\mathfrak{S}_w}\left(x \right) \le {\rm{Ma}}{{\rm{x}}_w}\left(x \right),$$\end{document}
引用
收藏
页码:1319 / 1330
页数:11
相关论文
共 50 条
  • [11] Upper bounds for the Lq norm of Fekete polynomials on subarcs
    Erdelyi, Tamas
    ACTA ARITHMETICA, 2012, 153 (01) : 81 - 91
  • [12] Exact upper bounds for the number of the polynomials with given discriminants
    Vasili Bernik
    Natalia Budarina
    Fridrich Götze
    Lithuanian Mathematical Journal, 2017, 57 : 283 - 293
  • [13] UPPER BOUNDS OF TOPOLOGY OF COMPLEX POLYNOMIALS IN TWO VARIABLES
    Glutsyuk, A. A.
    MOSCOW MATHEMATICAL JOURNAL, 2005, 5 (04) : 781 - 828
  • [14] Exact upper bounds for the number of the polynomials with given discriminants
    Bernik, Vasili
    Budarina, Natalia
    Goetze, Fridrich
    LITHUANIAN MATHEMATICAL JOURNAL, 2017, 57 (03) : 283 - 293
  • [15] Upper and lower bounds for Kazhdan-Lusztig polynomials
    Brenti, F
    EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (03) : 283 - 297
  • [16] Explicit upper bounds for Touchard polynomials and Bell numbers
    A.-M. Acu
    J. A. Adell
    I. Raşa
    Acta Mathematica Hungarica, 2024, 172 : 255 - 263
  • [17] Sharp upper and lower bounds for the moments of Bernstein polynomials
    Adell, Jose A.
    Bustamante, Jorge
    Quesada, Jose M.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 265 : 723 - 732
  • [18] UPPER BOUNDS FOR NUMBER OF REAL ZEROS OF GENERALIZED POLYNOMIALS
    VANDEVEL, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1974, 54 (12): : 813 - 815
  • [19] Universal Schubert polynomials
    Fulton, W
    DUKE MATHEMATICAL JOURNAL, 1999, 96 (03) : 575 - 594
  • [20] Twisted Schubert polynomials
    Liu, Ricky Ini
    SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (05):