Let w be a permutation of {1, 2, …, n}, and let D(w) be the Rothe diagram of w. The Schubert polynomial Sw(x)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathfrak{S}_w}\left(x \right)$\end{document} can be realized as the dual character of the flagged Weyl module associated with D(w). This implies the following coefficient-wise inequality:
Minw(x)≤Sw(x)≤Maxw(x),\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\rm{Mi}}{{\rm{n}}_w}\left(x \right) \le {\mathfrak{S}_w}\left(x \right) \le {\rm{Ma}}{{\rm{x}}_w}\left(x \right),$$\end{document}